版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆浙江省逍林初中中考聯(lián)考數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,剪兩張對邊平行且寬度相同的紙條隨意交叉疊放在一起,轉動其中一張,重合部分構成一個四邊形,則下列結論中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°2.下列運算正確的是()A.(a2)3=a5 B. C.(3ab)2=6a2b2 D.a(chǎn)6÷a3=a23.如圖,O為原點,點A的坐標為(3,0),點B的坐標為(0,4),⊙D過A、B、O三點,點C為上一點(不與O、A兩點重合),則cosC的值為()A. B. C. D.4.近似數(shù)精確到()A.十分位 B.個位 C.十位 D.百位5.如圖,點A、B、C、D在⊙O上,∠AOC=120°,點B是弧AC的中點,則∠D的度數(shù)是()A.60° B.35° C.30.5° D.30°6.如圖,在熱氣球C處測得地面A、B兩點的俯角分別為30°、45°,熱氣球C的高度CD為100米,點A、D、B在同一直線上,則AB兩點的距離是()A.200米 B.200米 C.220米 D.100米7.一次函數(shù)y=ax+b與反比例函數(shù),其中ab<0,a、b為常數(shù),它們在同一坐標系中的圖象可以是()A. B. C. D.8.如圖是某公園的一角,∠AOB=90°,弧AB的半徑OA長是6米,C是OA的中點,點D在弧AB上,CD∥OB,則圖中休閑區(qū)(陰影部分)的面積是()A.米2 B.米2 C.米2 D.米29.在0,π,﹣3,0.6,這5個實數(shù)中,無理數(shù)的個數(shù)為()A.1個 B.2個 C.3個 D.4個10.如圖,⊙O的半徑OA=6,以A為圓心,OA為半徑的弧交⊙O于B、C點,則BC=()A.6 B.6 C.3 D.3二、填空題(共7小題,每小題3分,滿分21分)11.某招聘考試分筆試和面試兩種,其中筆試按60%、面試按40%計算加權平均數(shù),作為總成績.孔明筆試成績90分,面試成績85分,那么孔明的總成績是分.12.如果一個正多邊形的中心角等于,那么這個正多邊形的邊數(shù)是__________.13.Rt△ABC的邊AB=5,AC=4,BC=3,矩形DEFG的四個頂點都在Rt△ABC的邊上,當矩形DEFG的面積最大時,其對角線的長為_______.14.如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等.若等腰直角三角形ABC的直角頂點C在l1上,另兩個頂點A、B分別在l3、l2上,則tanα的值是______.15.如圖,等邊三角形ABC內接于⊙O,若⊙O的半徑為2,則圖中陰影部分的面積等于_______.16.計算的結果是____.17.已知實數(shù)a、b、c滿足+|10﹣2c|=0,則代數(shù)式ab+bc的值為__.三、解答題(共7小題,滿分69分)18.(10分)圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段AC的兩個端點均在小正方形的頂點上.(1)如圖1,點P在小正方形的頂點上,在圖1中作出點P關于直線AC的對稱點Q,連接AQ、QC、CP、PA,并直接寫出四邊形AQCP的周長;(2)在圖2中畫出一個以線段AC為對角線、面積為6的矩形ABCD,且點B和點D均在小正方形的頂點上.19.(5分)已如:⊙O與⊙O上的一點A(1)求作:⊙O的內接正六邊形ABCDEF;(要求:尺規(guī)作圖,不寫作法但保留作圖痕跡)(2)連接CE,BF,判斷四邊形BCEF是否為矩形,并說明理由.20.(8分)如圖,已知∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE與BD相交于點O.求證:EC=ED.21.(10分)如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,-3),動點P在拋物線上.(1)b=_________,c=_________,點B的坐標為_____________;(直接填寫結果)(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.22.(10分)如圖,AB是⊙O的一條弦,E是AB的中點,過點E作EC⊥OA于點C,過點B作⊙O的切線交CE的延長線于點D.(1)求證:DB=DE;(2)若AB=12,BD=5,求⊙O的半徑.23.(12分)如圖,已知∠ABC=90°,AB=BC.直線l與以BC為直徑的圓O相切于點C.點F是圓O上異于B、C的動點,直線BF與l相交于點E,過點F作AF的垂線交直線BC于點D.如果BE=15,CE=9,求EF的長;證明:①△CDF∽△BAF;②CD=CE;探求動點F在什么位置時,相應的點D位于線段BC的延長線上,且使BC=CD,請說明你的理由.24.(14分)先化簡,再求值:÷(a﹣),其中a=3tan30°+1,b=cos45°.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
首先可判斷重疊部分為平行四邊形,且兩條紙條寬度相同;再由平行四邊形的等積轉換可得鄰邊相等,則四邊形為菱形.所以根據(jù)菱形的性質進行判斷.【詳解】解:四邊形是用兩張等寬的紙條交叉重疊地放在一起而組成的圖形,,,四邊形是平行四邊形(對邊相互平行的四邊形是平行四邊形);過點分別作,邊上的高為,.則(兩紙條相同,紙條寬度相同);平行四邊形中,,即,,即.故正確;平行四邊形為菱形(鄰邊相等的平行四邊形是菱形).,(菱形的對角相等),故正確;,(平行四邊形的對邊相等),故正確;如果四邊形是矩形時,該等式成立.故不一定正確.故選:.【點睛】本題考查了菱形的判定與性質.注意:“鄰邊相等的平行四邊形是菱形”,而非“鄰邊相等的四邊形是菱形”.2、B【解析】分析:本題考察冪的乘方,同底數(shù)冪的乘法,積的乘方和同底數(shù)冪的除法.解析:,故A選項錯誤;a3·a=a4故B選項正確;(3ab)2=9a2b2故C選項錯誤;a6÷a3=a3故D選項錯誤.故選B.3、D【解析】
如圖,連接AB,由圓周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故選D.4、C【解析】
根據(jù)近似數(shù)的精確度:近似數(shù)5.0×102精確到十位.故選C.考點:近似數(shù)和有效數(shù)字5、D【解析】
根據(jù)圓心角、弧、弦的關系定理得到∠AOB=∠AOC,再根據(jù)圓周角定理即可解答.【詳解】連接OB,∵點B是弧的中點,∴∠AOB=∠AOC=60°,由圓周角定理得,∠D=∠AOB=30°,故選D.【點睛】此題考查了圓心角、弧、弦的關系定理,解題關鍵在于利用好圓周角定理.6、D【解析】
在熱氣球C處測得地面B點的俯角分別為45°,BD=CD=100米,再在Rt△ACD中求出AD的長,據(jù)此即可求出AB的長.【詳解】∵在熱氣球C處測得地面B點的俯角分別為45°,∴BD=CD=100米,∵在熱氣球C處測得地面A點的俯角分別為30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故選D.【點睛】本題考查了解直角三角形的應用--仰角、俯角問題,要求學生能借助仰角構造直角三角形并解直角三角形.7、C【解析】
根據(jù)一次函數(shù)的位置確定a、b的大小,看是否符合ab<0,計算a-b確定符號,確定雙曲線的位置.【詳解】A.由一次函數(shù)圖象過一、三象限,得a>0,交y軸負半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數(shù)y=的圖象過一、三象限,所以此選項不正確;B.由一次函數(shù)圖象過二、四象限,得a<0,交y軸正半軸,則b>0,滿足ab<0,∴a?b<0,∴反比例函數(shù)y=的圖象過二、四象限,所以此選項不正確;C.由一次函數(shù)圖象過一、三象限,得a>0,交y軸負半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數(shù)y=的圖象過一、三象限,所以此選項正確;D.由一次函數(shù)圖象過二、四象限,得a<0,交y軸負半軸,則b<0,滿足ab>0,與已知相矛盾所以此選項不正確;故選C.【點睛】此題考查反比例函數(shù)的圖象,一次函數(shù)的圖象,解題關鍵在于確定a、b的大小8、C【解析】
連接OD,∵弧AB的半徑OA長是6米,C是OA的中點,∴OC=OA=×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴.又∵,∴∠DOC=60°.∴(米2).故選C.9、B【解析】
分別根據(jù)無理數(shù)、有理數(shù)的定義逐一判斷即可得.【詳解】解:在0,π,-3,0.6,這5個實數(shù)中,無理數(shù)有π、這2個,故選B.【點睛】此題主要考查了無理數(shù)的定義,注意帶根號的要開不盡方才是無理數(shù),無限不循環(huán)小數(shù)為無理數(shù).如π,,0.8080080008…(每兩個8之間依次多1個0)等形式.10、A【解析】試題分析:根據(jù)垂徑定理先求BC一半的長,再求BC的長.解:如圖所示,設OA與BC相交于D點.∵AB=OA=OB=6,∴△OAB是等邊三角形.又根據(jù)垂徑定理可得,OA平分BC,利用勾股定理可得BD=所以BC=2BD=.故選A.點睛:本題主要考查垂徑定理和勾股定理.解題的關鍵在于要利用好題中的條件圓O與圓A的半徑相等,從而得出△OAB是等邊三角形,為后繼求解打好基礎.二、填空題(共7小題,每小題3分,滿分21分)11、88【解析】試題分析:根據(jù)筆試和面試所占的百分比以及筆試成績和面試成績,列出算式,進行計算即可:∵筆試按60%、面試按40%計算,∴總成績是:90×60%+85×40%=88(分).12、12.【解析】
根據(jù)正n邊形的中心角的度數(shù)為進行計算即可得到答案.【詳解】解:根據(jù)正n邊形的中心角的度數(shù)為,則n=360÷30=12,故這個正多邊形的邊數(shù)為12,故答案為:12.【點睛】本題考查的是正多邊形內角和中心角的知識,掌握中心角的計算公式是解題的關鍵.13、或【解析】
分兩種情形畫出圖形分別求解即可解決問題【詳解】情況1:如圖1中,四邊形DEFG是△ABC的內接矩形,設DE=CF=x,則BF=3-x∵EF∥AC,∴=∴=∴EF=(3-x)∴S矩形DEFG=x?(3-x)=﹣(x-)2+3∴x=時,矩形的面積最大,最大值為3,此時對角線=.情況2:如圖2中,四邊形DEFG是△ABC的內接矩形,設DE=GF=x,作CH⊥AB于H,交DG于T.則CH=,CT=﹣x,∵DG∥AB,∴△CDG∽△CAB,∴∴∴DG=5﹣x,∴S矩形DEFG=x(5﹣x)=﹣(x﹣)2+3,∴x=時,矩形的面積最大為3,此時對角線==∴矩形面積的最大值為3,此時對角線的長為或故答案為或【點睛】本題考查相似三角形的應用、矩形的性質、二次函數(shù)的最值等知識,解題的關鍵是學會用分類討論的思想思考問題14、【解析】如圖,分別過點A,B作AE⊥,BF⊥,BD⊥,垂足分別為E,F(xiàn),D.∵△ABC為等腰直角三角形,∴AC=BC,∠ACB=90°,∴∠ACE+∠BCF=90°.∵AE⊥,BF⊥∴∠CAE+∠ACE=90°,∠CBF+∠BCF=90°,∴∠CAE=∠BCF,∠ACE=∠CBF.∵∠CAE=∠BCF,AC=BC,∠ACE=∠CBF,∴△ACE≌△CBF,∴CE=BF,AE=CF.設平行線間距離為d=l,則CE=BF=BD=1,AE=CF=2,AD=EF=CE+CF=3,∴tanα=tan∠BAD==.點睛:分別過點A,B作AE⊥,BF⊥,BD⊥,垂足分別為E,F(xiàn),D,可根據(jù)ASA證明△ACE≌△CBF,設平行線間距離為d=1,進而求出AD、BD的值;本題考查了全等三角形的判定和銳角三角函數(shù),解題的關鍵是合理添加輔助線構造全等三角形;15、【解析】
分析:題圖中陰影部分為弓形與三角形的和,因此求出扇形AOC的面積即可,所以關鍵是求圓心角的度數(shù).本題考查組合圖形的求法.扇形面積公式等.詳解:連結OC,∵△ABC為正三角形,∴∠AOC==120°,∵,∴圖中陰影部分的面積等于∴S扇形AOC=即S陰影=cm2.故答案為.點睛:本題考查了等邊三角形性質,扇形的面積,三角形的面積等知識點的應用,關鍵是求出∠AOC的度數(shù),主要考查學生綜合運用定理進行推理和計算的能力.16、【解析】原式=,故答案為.17、-1【解析】試題分析:根據(jù)非負數(shù)的性質可得:,解得:,則ab+bc=(-11)×6+6×5=-66+30=-1.三、解答題(共7小題,滿分69分)18、(1)作圖見解析;;(2)作圖見解析.【解析】試題分析:(1)通過數(shù)格子可得到點P關于AC的對稱點,再直接利用勾股定理可得到周長;(2)利用網(wǎng)格結合矩形的性質以及勾股定理可畫出矩形.試題解析:(1)如圖1所示:四邊形AQCP即為所求,它的周長為:;(2)如圖2所示:四邊形ABCD即為所求.考點:1軸對稱;2勾股定理.19、(1)答案見解析;(2)證明見解析.【解析】
(1)如圖,在⊙O上依次截取六段弦,使它們都等于OA,從而得到正六邊形ABCDEF;(2)連接BE,如圖,利用正六邊形的性質得AB=BC=CD=DE=EF=FA,,則判斷BE為直徑,所以∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,然后判斷四邊形BCEF為矩形.【詳解】解:(1)如圖,正六邊形ABCDEF為所作;(2)四邊形BCEF為矩形.理由如下:連接BE,如圖,∵六邊形ABCDEF為正六邊形,∴AB=BC=CD=DE=EF=FA,∴,∴,∴,∴BE為直徑,∴∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,∴四邊形BCEF為矩形.【點睛】本題考查了作圖-復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.也考查了矩形的判定與正六邊形的性質.20、見解析【解析】
由∠1=∠2,可得∠BED=∠AEC,根據(jù)利用ASA可判定△BED≌△AEC,然后根據(jù)全等三角形的性質即可得證.【詳解】解:∵∠1=∠2,∴∠1+∠AED=∠2+∠AED,即∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(ASA),∴ED=EC.【點睛】本題主要考查全等三角形的判定和性質,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(即全等三角形的對應邊相等、對應角相等)是解題的關鍵.21、(1),,(-1,0);(2)存在P的坐標是或;(1)當EF最短時,點P的坐標是:(,)或(,)【解析】
(1)將點A和點C的坐標代入拋物線的解析式可求得b、c的值,然后令y=0可求得點B的坐標;(2)分別過點C和點A作AC的垂線,將拋物線與P1,P2兩點先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點坐標即可;(1)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據(jù)垂線段最短可求得點D的縱坐標,從而得到點P的縱坐標,然后由拋物線的解析式可求得點P的坐標.【詳解】解:(1)∵將點A和點C的坐標代入拋物線的解析式得:,解得:b=﹣2,c=﹣1,∴拋物線的解析式為.∵令,解得:,,∴點B的坐標為(﹣1,0).故答案為﹣2;﹣1;(﹣1,0).(2)存在.理由:如圖所示:①當∠ACP1=90°.由(1)可知點A的坐標為(1,0).設AC的解析式為y=kx﹣1.∵將點A的坐標代入得1k﹣1=0,解得k=1,∴直線AC的解析式為y=x﹣1,∴直線CP1的解析式為y=﹣x﹣1.∵將y=﹣x﹣1與聯(lián)立解得,(舍去),∴點P1的坐標為(1,﹣4).②當∠P2AC=90°時.設AP2的解析式為y=﹣x+b.∵將x=1,y=0代入得:﹣1+b=0,解得b=1,∴直線AP2的解析式為y=﹣x+1.∵將y=﹣x+1與聯(lián)立解得=﹣2,=1(舍去),∴點P2的坐標為(﹣2,5).綜上所述,P的坐標是(1,﹣4)或(﹣2,5).(1)如圖2所示:連接OD.由題意可知,四邊形OFDE是矩形,則OD=EF.根據(jù)垂線段最短,可得當OD⊥AC時,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中點.又∵DF∥OC,∴DF=OC=,∴點P的縱坐標是,∴,解得:x=,∴當EF最短時,點P的坐標是:(,)或(,).22、(1)證明見解析;(2)【解析】試題分析:(1)由切線性質及等量代換推出∠4=∠5,再利用等角對等邊可得出結論;(2)由已知條件得出sin∠DEF和sin∠AOE的值,利用對應角的三角函數(shù)值相等推出結論.試題解析:(1)∵DC⊥OA,∴∠1+∠3=90°,∵BD為切線,∴OB⊥BD,∴∠2+∠5=90°,∵OA=OB,∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中,∠4=∠5,∴DE=DB.(2)作DF⊥AB于F,連接OE,∵DB=DE,∴EF=BE=3,在RT△DEF中,EF=3,DE=BD=5,EF=3,∴DF=∴sin∠DEF==,∵∠AOE=∠DEF,∴在RT△AOE中,sin∠AOE=,∵AE=6,∴AO=.【點睛】本題考查了圓的性質,切線定理,三角形相似,三角函數(shù)等知識,結合圖形正確地選擇相應的知識點與方法進行解題是關鍵.23、(1)(2)證明見解析(3)F在直徑BC下方的圓弧上,且【解析】
(1)由直線l與以BC為直徑的圓O相切于點C,即可得∠BCE=90°,∠BFC=∠CFE=90°,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 英漢交互口譯課程設計
- 體育行業(yè)助理的日常工作內容和能力要求
- 內科護士工作心得
- 情境教學法在班級中的應用計劃
- 建筑行業(yè)客服工作思考
- 酒店管理技術要點概述
- 旅游景區(qū)衛(wèi)生凈化
- 2024年甜甜的秘密教案
- 2024年認識數(shù)學的教案
- 2024年認識空氣教案
- 2025年1月山西、陜西、寧夏、青海普通高等學校招生考試適應性測試(八省聯(lián)考)政治
- 《廣東省智慧高速公路建設指南(試行)》
- 護理年終個人工作總結
- 《臨床顱內壓增高》課件
- 2024老師聘用合同范本
- 國開電大《建筑結構試驗》形考任務1-4參考答案
- 年度分析報告格式范文
- 2024年度吉林省國家電網(wǎng)招聘之法學類典型題匯編及答案
- 2024電力建設工程質量問題通病防止手冊
- 【初中地理】世界的聚落+課件-2024-2025學年七年級地理上學期(湘教版2024)
- 辯論英文課件教學課件
評論
0/150
提交評論