2025年山東省決勝新高三寒假開學綜合檢測試題含解析_第1頁
2025年山東省決勝新高三寒假開學綜合檢測試題含解析_第2頁
2025年山東省決勝新高三寒假開學綜合檢測試題含解析_第3頁
2025年山東省決勝新高三寒假開學綜合檢測試題含解析_第4頁
2025年山東省決勝新高三寒假開學綜合檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025年山東省決勝新高三寒假開學綜合檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設M是邊BC上任意一點,N為AM的中點,若,則的值為()A.1 B. C. D.2.如圖,在中,,是上一點,若,則實數(shù)的值為()A. B. C. D.3.已知點,若點在曲線上運動,則面積的最小值為()A.6 B.3 C. D.4.設,滿足約束條件,若的最大值為,則的展開式中項的系數(shù)為()A.60 B.80 C.90 D.1205.一個由兩個圓柱組合而成的密閉容器內裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時,液面以上空余部分的高為,如圖2放置容器時,液面以上空余部分的高為,則()A. B. C. D.6.已知函數(shù),則()A.1 B.2 C.3 D.47.根據(jù)黨中央關于“精準”脫貧的要求,我市某農業(yè)經濟部門派四位專家對三個縣區(qū)進行調研,每個縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一縣區(qū)的概率為()A. B. C. D.8.復數(shù)(為虛數(shù)單位),則的共軛復數(shù)在復平面上對應的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限9.甲、乙、丙三人相約晚上在某地會面,已知這三人都不會違約且無兩人同時到達,則甲第一個到、丙第三個到的概率是()A. B. C. D.10.給甲、乙、丙、丁四人安排泥工、木工、油漆三項工作,每項工作至少一人,每人做且僅做一項工作,甲不能安排木工工作,則不同的安排方法共有()A.12種 B.18種 C.24種 D.64種11.已知直線過雙曲線C:的左焦點F,且與雙曲線C在第二象限交于點A,若(O為坐標原點),則雙曲線C的離心率為A. B. C. D.12.如圖,棱長為的正方體中,為線段的中點,分別為線段和棱上任意一點,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校為了解家長對學校食堂的滿意情況,分別從高一、高二年級隨機抽取了20位家長的滿意度評分,其頻數(shù)分布表如下:滿意度評分分組合計高一1366420高二2655220根據(jù)評分,將家長的滿意度從低到高分為三個等級:滿意度評分評分70分70評分90評分90分滿意度等級不滿意滿意非常滿意假設兩個年級家長的評價結果相互獨立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應事件發(fā)生的概率.現(xiàn)從高一、高二年級各隨機抽取1名家長,記事件:“高一家長的滿意度等級高于高二家長的滿意度等級”,則事件發(fā)生的概率為__________.14.已知點P是直線y=x+1上的動點,點Q是拋物線y=x2上的動點.設點M為線段PQ的中點,O為原點,則|OM|15.已知在等差數(shù)列中,,,前n項和為,則________.16.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機選一匹進行一場比賽,則田忌的馬獲勝的概率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)求f(x)的單調遞增區(qū)間;(2)△ABC內角A、B、C的對邊分別為a、b、c,若且A為銳角,a=3,sinC=2sinB,求△ABC的面積.18.(12分)已知數(shù)列的通項,數(shù)列為等比數(shù)列,且,,成等差數(shù)列.(1)求數(shù)列的通項;(2)設,求數(shù)列的前項和.19.(12分)已知{an}是一個公差大于0的等差數(shù)列,且滿足a3a5=45,a2+a6=1.(I)求{an}的通項公式;(Ⅱ)若數(shù)列{bn}滿足:…,求{bn}的前n項和.20.(12分)以坐標原點為極點,軸的正半軸為極軸,且在兩種坐標系中取相同的長度單位,建立極坐標系,判斷直線為參數(shù))與圓的位置關系.21.(12分)如圖,在三棱柱中,,,,為的中點,且.(1)求證:平面;(2)求銳二面角的余弦值.22.(10分)已知公比為正數(shù)的等比數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

設,通過,再利用向量的加減運算可得,結合條件即可得解.【詳解】設,則有.又,所以,有.故選B.本題考查了向量共線及向量運算知識,利用向量共線及向量運算知識,用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.2.C【解析】

由題意,可根據(jù)向量運算法則得到(1﹣m),從而由向量分解的唯一性得出關于t的方程,求出t的值.【詳解】由題意及圖,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故選C.本題考查平面向量基本定理,根據(jù)分解的唯一性得到所求參數(shù)的方程是解答本題的關鍵,本題屬于基礎題.3.B【解析】

求得直線的方程,畫出曲線表示的下半圓,結合圖象可得位于,結合點到直線的距離公式和兩點的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點為圓心,1為半徑的下半圓(包括兩個端點),如圖,直線的方程為,可得,由圓與直線的位置關系知在時,到直線距離最短,即為,則的面積的最小值為.故選:B.本題考查三角形面積最值,解題關鍵是掌握直線與圓的位置關系,確定半圓上的點到直線距離的最小值,這由數(shù)形結合思想易得.4.B【解析】

畫出可行域和目標函數(shù),根據(jù)平移得到,再利用二項式定理計算得到答案.【詳解】如圖所示:畫出可行域和目標函數(shù),,即,故表示直線與截距的倍,根據(jù)圖像知:當時,的最大值為,故.展開式的通項為:,取得到項的系數(shù)為:.故選:.本題考查了線性規(guī)劃求最值,二項式定理,意在考查學生的計算能力和綜合應用能力.5.B【解析】

根據(jù)空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因為,所以.故選:B本題考查圓柱的體積,屬于基礎題.6.C【解析】

結合分段函數(shù)的解析式,先求出,進而可求出.【詳解】由題意可得,則.故選:C.本題考查了求函數(shù)的值,考查了分段函數(shù)的性質,考查運算求解能力,屬于基礎題.7.A【解析】

每個縣區(qū)至少派一位專家,基本事件總數(shù),甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù),由此能求出甲,乙兩位專家派遣至同一縣區(qū)的概率.【詳解】派四位專家對三個縣區(qū)進行調研,每個縣區(qū)至少派一位專家基本事件總數(shù):甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù):甲,乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項:本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,是基礎題.8.C【解析】

由復數(shù)除法求出,寫出共軛復數(shù),寫出共軛復數(shù)對應點坐標即得【詳解】解析:,,對應點為,在第三象限.故選:C.本題考查復數(shù)的除法運算,共軛復數(shù)的概念,復數(shù)的幾何意義.掌握復數(shù)除法法則是解題關鍵.9.D【解析】

先判斷是一個古典概型,列舉出甲、乙、丙三人相約到達的基本事件種數(shù),再得到甲第一個到、丙第三個到的基本事件的種數(shù),利用古典概型的概率公式求解.【詳解】甲、乙、丙三人相約到達的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6種,其中甲第一個到、丙第三個到有甲乙丙,共1種,所以甲第一個到、丙第三個到的概率是.故選:D本題主要考查古典概型的概率求法,還考查了理解辨析的能力,屬于基礎題.10.C【解析】

根據(jù)題意,分2步進行分析:①,將4人分成3組,②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項工作,由分步計數(shù)原理計算可得答案.【詳解】解:根據(jù)題意,分2步進行分析:①,將4人分成3組,有種分法;②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項工作,有種情況,此時有種情況,則有種不同的安排方法;故選:C.本題考查排列、組合的應用,涉及分步計數(shù)原理的應用,屬于基礎題.11.B【解析】

直線的傾斜角為,易得.設雙曲線C的右焦點為E,可得中,,則,所以雙曲線C的離心率為.故選B.12.D【解析】

取中點,過作面,可得為等腰直角三角形,由,可得,當時,最小,由,故,即可求解.【詳解】取中點,過作面,如圖:則,故,而對固定的點,當時,最?。藭r由面,可知為等腰直角三角形,,故.故選:D本題考查了空間幾何體中的線面垂直、考查了學生的空間想象能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.0.42【解析】

高一家長的滿意度等級高于高二家長的滿意度等級有三種情況,分別求出三種情況的概率,再利用加法公式即可.【詳解】由已知,高一家長滿意等級為不滿意的概率為,滿意的概率為,非常滿意的概率為,高二家長滿意等級為不滿意的概率為,滿意的概率為,非常滿意的概率為,高一家長的滿意度等級高于高二家長的滿意度等級有三種情況:1.高一家長滿意,高二家長不滿意,其概率為;2.高一家長非常滿意,高二家長不滿意,其概率為;3.高一家長非常滿意,高二家長滿意,其概率為.由加法公式,知事件發(fā)生的概率為.故答案為:本題考查獨立事件的概率,涉及到概率的加法公式,是一道中檔題.14.3【解析】

過點Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,當直線相切時距離最小,計算得到答案.【詳解】如圖所示:過點Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,y=x2,則y'=2x=1,x=1點M為線段PQ的中點,故M在直線y=x+38時距離最小,故故答案為:32本題考查了拋物線中距離的最值問題,轉化為切線問題是解題的關鍵.15.39【解析】

設等差數(shù)列公差為d,首項為,再利用基本量法列式求解公差與首項,進而求得即可.【詳解】設等差數(shù)列公差為d,首項為,根據(jù)題意可得,解得,所以.故答案為:39本題考查等差數(shù)列的基本量計算以及前n項和的公式,屬于基礎題.16..【解析】分析:由題意結合古典概型計算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對齊王的下等馬,田忌的上等馬對齊王的下等馬,田忌的上等馬對齊王的中等馬,結合古典概型公式可得,田忌的馬獲勝的概率為.點睛:有關古典概型的概率問題,關鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時,用列舉法把所有基本事件一一列出時,要做到不重復、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)利用降次公式、輔助角公式化簡解析式,根據(jù)三角函數(shù)單調區(qū)間的求法,求得的單調遞增區(qū)間.(2)先由求得,利用正弦定理得到,結合余弦定理列方程,求得,由此求得三角形的面積.【詳解】(1)函數(shù),,由,得.所以的單調遞增區(qū)間為.(2)因為且為銳角,所以.由及正弦定理可得,又,由余弦定理可得,解得,.本小題主要考查三角恒等變換,考查三角函數(shù)單調區(qū)間的求法,考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.18.(1);(2).【解析】

(1)根據(jù),,成等差數(shù)列以及為等比數(shù)列,通過直接對進行賦值計算出的首項和公比,即可求解出的通項公式;(2)的通項公式符合等差乘以等比的形式,采用錯位相減法進行求和.【詳解】(1)數(shù)列為等比數(shù)列,且,,成等差數(shù)列.設數(shù)列的公比為,,,解得(2),,,,.本題考查等差、等比數(shù)列的綜合以及錯位相減法求和的應用,難度一般.判斷是否適合使用錯位相減法,可根據(jù)數(shù)列的通項公式是否符合等差乘以等比的形式來判斷.19.(I);(Ⅱ)【解析】

(Ⅰ)設等差數(shù)列的公差為,則依題設.由,可得.由,得,可得.所以.可得.(Ⅱ)設,則.即,可得,且.所以,可知.所以,所以數(shù)列是首項為4,公比為2的等比數(shù)列.所以前項和.考點:等差數(shù)列通項公式、用數(shù)列前項和求數(shù)列通項公式.20.直線與圓C相切.【解析】

首先把直線和圓轉換為直角坐標方程,進一步利用點到直線的距離的應用求出直線和圓的位置關系.【詳解】直線為參數(shù)),轉換為直角坐標方程為.圓轉換為直角坐標方程為,轉換為標準形式為,所以圓心到直線,的距離.直線與圓C相切.本題考查的知識要點:參數(shù)方程極坐標方程和直角坐標方程之間的轉換,直線與圓的位置關系式的應用,點到直線的距離公式的應用,主要考查學生的運算能力和轉換能力及思維能力,屬于基礎題型.21.(1)證明見解析;(2).【解析】

(1)證明后可得平面,從而得,結合已知得線面垂直;(2)以為坐標原點,以為軸,為軸,為建立空間直角坐標系,設,寫出各點坐標,求出二面角的面的法向量,由法向量夾角的余弦值得二面角的余弦值.【詳解】(1)證明:因為,為中點,所以,又,,所以平面,又平面,所以,又,,所以平面.(2)由已知及(1)可知,,兩兩垂直,所以以為坐標原點,以為軸,為軸,為建立空間直角坐標系,設,則,,,,,.設平面的法向量,則,即,令,則;設平面的法向量,則,即,令,則,所以.故銳二

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論