版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省揭陽市重點中學(xué)2024屆中考數(shù)學(xué)押題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.已知直線m∥n,將一塊含30°角的直角三角板ABC按如圖方式放置(∠ABC=30°),其中A,B兩點分別落在直線m,n上,若∠1=20°,則∠2的度數(shù)為()A.20° B.30° C.45° D.50°2.下列運算結(jié)果正確的是()A.a(chǎn)3+a4=a7 B.a(chǎn)4÷a3=a C.a(chǎn)3?a2=2a3 D.(a3)3=a63.甲、乙兩人分別以4m/s和5m/s的速度,同時從100m直線型跑道的起點向同一方向起跑,設(shè)乙的奔跑時間為t(s),甲乙兩人的距離為S(m),則S關(guān)于t的函數(shù)圖象為()A. B. C. D.4.填在下面各正方形中的四個數(shù)之間都有相同的規(guī)律,根據(jù)這種規(guī)律,m的值應(yīng)是()A.110 B.158 C.168 D.1785.下列圖標(biāo)中,是中心對稱圖形的是()A. B.C. D.6.下列因式分解正確的是()A.x2+9=(x+3)2 B.a(chǎn)2+2a+4=(a+2)2C.a(chǎn)3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x)7.如果一個正多邊形內(nèi)角和等于1080°,那么這個正多邊形的每一個外角等于()A. B. C. D.8.如圖,在平面直角坐標(biāo)系xOy中,A(2,0),B(0,2),⊙C的圓心為點C(﹣1,0),半徑為1.若D是⊙C上的一個動點,線段DA與y軸交于E點,則△ABE面積的最小值是()A.2B.83C.2+29.對于不為零的兩個實數(shù)a,b,如果規(guī)定:a★b=,那么函數(shù)y=2★x的圖象大致是()A. B. C. D.10.小張同學(xué)制作了四張材質(zhì)和外觀完全一樣的書簽,每個書簽上寫著一本書的名稱或一個作者姓名,分別是:《西游記》、施耐庵、《安徒生童話》、安徒生,從這四張書簽中隨機抽取兩張,則抽到的書簽正好是相對應(yīng)的書名和作者姓名的概率是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.計算:=_____________.12.如圖,在兩個同心圓中,四條直徑把大圓分成八等份,若往圓面投擲飛鏢,則飛鏢落在黑色區(qū)域的概率是_______.13.如圖,數(shù)軸上點A、B、C所表示的數(shù)分別為a、b、c,點C是線段AB的中點,若原點O是線段AC上的任意一點,那么a+b-2c=______.14.如圖,在中國象棋的殘局上建立平面直角坐標(biāo)系,如果“相”和“兵”的坐標(biāo)分別是(3,-1)和(-3,1),那么“卒”的坐標(biāo)為_____.
15.如圖,在△ABC中,P,Q分別為AB,AC的中點.若S△APQ=1,則S四邊形PBCQ=__.16.如圖,線段AB=10,點P在線段AB上,在AB的同側(cè)分別以AP、BP為邊長作正方形APCD和BPEF,點M、N分別是EF、CD的中點,則MN的最小值是_______.三、解答題(共8題,共72分)17.(8分)如圖,方格紙中每個小正方形的邊長均為1,線段AB的兩個端點均在小正方形的頂點上.在圖中畫出以線段AB為一邊的矩形ABCD(不是正方形),且點C和點D均在小正方形的頂點上;在圖中畫出以線段AB為一腰,底邊長為2的等腰三角形ABE,點E在小正方形的頂點上,連接CE,請直接寫出線段CE的長.18.(8分)如圖,△ABC內(nèi)接于⊙O,CD是⊙O的直徑,AB與CD交于點E,點P是CD延長線上的一點,AP=AC,且∠B=2∠P.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑;(3)在(2)的條件下,若點B等分半圓CD,求DE的長.19.(8分)如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,且BF是⊙O的切線,BF交AC的延長線于F.(1)求證:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的長.20.(8分)先化簡,再求值:﹣÷,其中a=1.21.(8分)如圖1,△ABC與△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE,BD,PM,PN,MN.(1)觀察猜想:圖1中,PM與PN的數(shù)量關(guān)系是,位置關(guān)系是.(2)探究證明:將圖1中的△CDE繞著點C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖2,AE與MP、BD分別交于點G、H,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△CDE繞點C任意旋轉(zhuǎn),若AC=4,CD=2,請直接寫出△PMN面積的最大值.22.(10分)解下列不等式組:23.(12分)如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c(a≠0)與x軸交于A、B兩點,與y軸交于點C,點A的坐標(biāo)為(﹣1,0),拋物線的對稱軸直線x=交x軸于點D.(1)求拋物線的解析式;(2)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,交x軸于點G,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標(biāo);(3)在(2)的條件下,將線段FG繞點G順時針旋轉(zhuǎn)一個角α(0°<α<90°),在旋轉(zhuǎn)過程中,設(shè)線段FG與拋物線交于點N,在線段GB上是否存在點P,使得以P、N、G為頂點的三角形與△ABC相似?如果存在,請直接寫出點P的坐標(biāo);如果不存在,請說明理由.24.某超市預(yù)測某飲料有發(fā)展前途,用1600元購進一批飲料,面市后果然供不應(yīng)求,又用6000元購進這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.第一批飲料進貨單價多少元?若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據(jù)兩直線平行,內(nèi)錯角相等計算即可.【詳解】因為m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故選D.【點睛】本題主要考查平行線的性質(zhì),清楚兩直線平行,內(nèi)錯角相等是解答本題的關(guān)鍵.2、B【解析】
分別根據(jù)同底數(shù)冪的乘法及除法法則、冪的乘方與積的乘方法則及合并同類項的法則對各選項進行逐一分析即可.【詳解】A.a3+a4≠a7,不是同類項,不能合并,本選項錯誤;B.a4÷a3=a4-3=a;,本選項正確;C.a3?a2=a5;,本選項錯誤;D.(a3)3=a9,本選項錯誤.故選B【點睛】本題考查的是同底數(shù)冪的乘法及除法法則、冪的乘方與積的乘方法則及合并同類項的法則等知識,比較簡單.3、B【解析】
勻速直線運動的路程s與運動時間t成正比,s-t圖象是一條傾斜的直線解答.【詳解】∵甲、乙兩人分別以4m/s和5m/s的速度,∴兩人的相對速度為1m/s,設(shè)乙的奔跑時間為t(s),所需時間為20s,兩人距離20s×1m/s=20m,故選B.【點睛】此題考查函數(shù)圖象問題,關(guān)鍵是根據(jù)勻速直線運動的路程s與運動時間t成正比解答.4、B【解析】根據(jù)排列規(guī)律,10下面的數(shù)是12,10右面的數(shù)是14,∵8=2×4?0,22=4×6?2,44=6×8?4,∴m=12×14?10=158.故選C.5、B【解析】
根據(jù)中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.【點睛】本題考查了中心對稱圖形的概念:中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.6、C【解析】
試題分析:A、B無法進行因式分解;C正確;D、原式=(1+2x)(1-2x)故選C,考點:因式分解【詳解】請在此輸入詳解!7、A【解析】
首先設(shè)此多邊形為n邊形,根據(jù)題意得:180(n-2)=1080,即可求得n=8,再由多邊形的外角和等于360°,即可求得答案.【詳解】設(shè)此多邊形為n邊形,根據(jù)題意得:180(n-2)=1080,解得:n=8,∴這個正多邊形的每一個外角等于:360°÷8=45°.故選A.【點睛】此題考查了多邊形的內(nèi)角和與外角和的知識.注意掌握多邊形內(nèi)角和定理:(n-2)?180°,外角和等于360°.8、C【解析】當(dāng)⊙C與AD相切時,△ABE面積最大,連接CD,則∠CDA=90°,∵A(2,0),B(0,2),⊙C的圓心為點C(-1,0),半徑為1,∴CD=1,AC=2+1=3,∴AD=AC2-CD2∵∠AOE=∠ADC=90°,∠EAO=∠CAD,∴△AOE∽△ADC,∴OA即222=∴BE=OB+OE=2+2∴S△ABE=1BE?OA=12×(2+22故答案為C.9、C【解析】
先根據(jù)規(guī)定得出函數(shù)y=2★x的解析式,再利用一次函數(shù)與反比例函數(shù)的圖象性質(zhì)即可求解.【詳解】由題意,可得當(dāng)2<x,即x>2時,y=2+x,y是x的一次函數(shù),圖象是一條射線除去端點,故A、D錯誤;當(dāng)2≥x,即x≤2時,y=﹣,y是x的反比例函數(shù),圖象是雙曲線,分布在第二、四象限,其中在第四象限時,0<x≤2,故B錯誤.故選:C.【點睛】本題考查了新定義,函數(shù)的圖象,一次函數(shù)與反比例函數(shù)的圖象性質(zhì),根據(jù)新定義得出函數(shù)y=2★x的解析式是解題的關(guān)鍵.10、D【解析】
根據(jù)題意先畫出樹狀圖得出所有等情況數(shù)和到的書簽正好是相對應(yīng)的書名和作者姓名的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:根據(jù)題意畫圖如下:共有12種等情況數(shù),抽到的書簽正好是相對應(yīng)的書名和作者姓名的有2種情況,則抽到的書簽正好是相對應(yīng)的書名和作者姓名的概率是=;故選D.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】分析:按單項式乘以多項式的法則將括號去掉,在合并同類項即可.詳解:原式=.故答案為:.點睛:熟記整式乘法和加減法的相關(guān)運算法則是正確解答這類題的關(guān)鍵.12、【解析】試題解析:∵兩個同心圓被等分成八等份,飛鏢落在每一個區(qū)域的機會是均等的,其中白色區(qū)域的面積占了其中的四等份,∴P(飛鏢落在白色區(qū)域)=.13、1【解析】∵點A、B、C所表示的數(shù)分別為a、b、c,點C是線段AB的中點,∴由中點公式得:c=,∴a+b=2c,∴a+b-2c=1.故答案為1.14、(-2,-2)【解析】
先根據(jù)“相”和“兵”的坐標(biāo)確定原點位置,然后建立坐標(biāo)系,進而可得“卒”的坐標(biāo).【詳解】“卒”的坐標(biāo)為(﹣2,﹣2),故答案是:(﹣2,﹣2).【點睛】考查了坐標(biāo)確定位置,關(guān)鍵是正確確定原點位置.15、1【解析】
根據(jù)三角形的中位線定理得到PQ=BC,得到相似比為,再根據(jù)相似三角形面積之比等于相似比的平方,可得到結(jié)果.【詳解】解:∵P,Q分別為AB,AC的中點,∴PQ∥BC,PQ=BC,∴△APQ∽△ABC,∴=()2=,∵S△APQ=1,∴S△ABC=4,∴S四邊形PBCQ=S△ABC﹣S△APQ=1,故答案為1.【點睛】本題考查相似三角形的判定和性質(zhì),三角形中位線定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.16、2【解析】
設(shè)MN=y,PC=x,根據(jù)正方形的性質(zhì)和勾股定理列出y1關(guān)于x的二次函數(shù)關(guān)系式,求二次函數(shù)的最值即可.【詳解】作MG⊥DC于G,如圖所示:設(shè)MN=y,PC=x,根據(jù)題意得:GN=2,MG=|10-1x|,在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)1.∵0<x<10,∴當(dāng)10-1x=0,即x=2時,y1最小值=12,∴y最小值=2.即MN的最小值為2;故答案為:2.【點睛】本題考查了正方形的性質(zhì)、勾股定理、二次函數(shù)的最值.熟練掌握勾股定理和二次函數(shù)的最值是解決問題的關(guān)鍵.三、解答題(共8題,共72分)17、作圖見解析;CE=4.【解析】分析:利用數(shù)形結(jié)合的思想解決問題即可.詳解:如圖所示,矩形ABCD和△ABE即為所求;CE=4.點睛:本題考查作圖-應(yīng)用與設(shè)計、等腰三角形的性質(zhì)、勾股定理、矩形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用思想結(jié)合的思想解決問題.18、(1)證明見解析;(2);(3);【解析】
(1)連接OA、AD,如圖,利用圓周角定理得到∠B=∠ADC,則可證明∠ADC=2∠ACP,利用CD為直徑得到∠DAC=90°,從而得到∠ADC=60°,∠C=30°,則∠AOP=60°,于是可證明∠OAP=90°,然后根據(jù)切線的判斷定理得到結(jié)論;(2)利用∠P=30°得到OP=2OA,則,從而得到⊙O的直徑;(3)作EH⊥AD于H,如圖,由點B等分半圓CD得到∠BAC=45°,則∠DAE=45°,設(shè)DH=x,則DE=2x,所以然后求出x即可得到DE的長.【詳解】(1)證明:連接OA、AD,如圖,∵∠B=2∠P,∠B=∠ADC,∴∠ADC=2∠P,∵AP=AC,∴∠P=∠ACP,∴∠ADC=2∠ACP,∵CD為直徑,∴∠DAC=90°,∴∠ADC=60°,∠C=30°,∴△ADO為等邊三角形,∴∠AOP=60°,而∠P=∠ACP=30°,∴∠OAP=90°,∴OA⊥PA,∴PA是⊙O的切線;(2)解:在Rt△OAP中,∵∠P=30°,∴OP=2OA,∴∴⊙O的直徑為;(3)解:作EH⊥AD于H,如圖,∵點B等分半圓CD,∴∠BAC=45°,∴∠DAE=45°,設(shè)DH=x,在Rt△DHE中,DE=2x,在Rt△AHE中,∴即解得∴【點睛】本題考查了切線的判定與性質(zhì):經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.圓的切線垂直于經(jīng)過切點的半徑.判定切線時“連圓心和直線與圓的公共點”或“過圓心作這條直線的垂線”;有切線時,常?!坝龅角悬c連圓心得半徑”.也考查了圓周角定理.19、(1)證明略;(2)BC=,BF=.【解析】試題分析:(1)連結(jié)AE.有AB是⊙O的直徑可得∠AEB=90°再有BF是⊙O的切線可得BF⊥AB,利用同角的余角相等即可證明;(2)在Rt△ABE中有三角函數(shù)可以求出BE,又有等腰三角形的三線合一可得BC=2BE,過點C作CG⊥AB于點G.可求出AE,再在Rt△ABE中,求出sin∠2,cos∠2.然后再在Rt△CGB中求出CG,最后證出△AGC∽△ABF有相似的性質(zhì)求出BF即可.試題解析:(1)證明:連結(jié)AE.∵AB是⊙O的直徑,∴∠AEB=90°,∴∠1+∠2=90°.∵BF是⊙O的切線,∴BF⊥AB,∴∠CBF+∠2=90°.∴∠CBF=∠1.∵AB=AC,∠AEB=90°,∴∠1=∠CAB.∴∠CBF=∠CAB.(2)解:過點C作CG⊥AB于點G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=.∵∠AEB=90°,AB=5.∴BE=AB·sin∠1=.∵AB=AC,∠AEB=90°,∴BC=2BE=.在Rt△ABE中,由勾股定理得.∴sin∠2=,cos∠2=.在Rt△CBG中,可求得GC=4,GB=2.∴AG=3.∵GC∥BF,∴△AGC∽△ABF.∴,∴.考點:切線的性質(zhì),相似的性質(zhì),勾股定理.20、-1【解析】
原式第二項利用除法法則變形,約分后通分,并利用同分母分式的減法法則計算,約分得到最簡結(jié)果,把a的值代入計算即可求出值.【詳解】解:原式=﹣?2(a﹣3)=﹣==,當(dāng)a=1時,原式==﹣1.【點睛】此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關(guān)鍵.21、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由見解析(3)【解析】
(1)由等腰直角三角形的性質(zhì)易證△ACE≌△BCD,由此可得AE=BD,再根據(jù)三角形中位線定理即可得到PM=PN,由平行線的性質(zhì)可得PM⊥PN;(2)(1)中的結(jié)論仍舊成立,由(1)中的證明思路即可證明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出當(dāng)BD的值最大時,PM的值最大,△PMN的面積最大,推出當(dāng)B、C、D共線時,BD的最大值=BC+CD=6,由此即可解決問題;【詳解】解:(1)PM=PN,PM⊥PN,理由如下:延長AE交BD于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵點M、N分別是斜邊AB、DE的中點,點P為AD的中點,∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,故答案是:PM=PN,PM⊥PN;(2)如圖②中,設(shè)AE交BC于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°,∴∠ACB+∠BCE=∠ECD+∠BCE,∴∠ACE=∠BCD,∴△ACE≌△BCD,∴AE=BD,∠CAE=∠CBD,又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°,∵點P、M、N分別為AD、AB、DE的中點,∴PM=BD,PM∥BD,PN=AE,PN∥AE,∴PM=PN,∴∠MGE+∠BHA=180°,∴∠MGE=90°,∴∠MPN=90°,∴PM⊥PN;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴當(dāng)BD的值最大時,PM的值最大,△PMN的面積最大,∴當(dāng)B、C、D共線時,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面積的最大值=×3×3=.【點睛】本題考查的是幾何變換綜合題,熟知等腰直角三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、三角形中位線定理的運用,解題的關(guān)鍵是正確尋找全等三角形解決問題,學(xué)會利用三角形的三邊關(guān)系解決最值問題,屬于中考壓軸題.22、﹣2≤x<.【解析】
先分別求出兩個不等式的解集,再求其公共解.【詳解】,解不等式①得,x<,解不等式②得,x≥﹣2,則不等式組的解集是﹣2≤x<.【點睛】本題主要考查了一元一次不等式組解集的求法,其簡便求法就是用口訣求解.求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).23、(1);(1),E(1,1);(3)存在,P點坐標(biāo)可以為(1+,5)或(3,5).【解析】
(1)設(shè)B(x1,5),由已知條件得,進而得到B(2,5).又由對稱軸求得b.最終得到拋物線解析式.(1)先求出直線BC的解析式,再設(shè)E(m,=﹣m+1.),F(xiàn)(m,﹣m1+m+1.)求得FE的值,得到S△CBF﹣m1+2m.又由S四邊形CDBF=S△CBF+S△CDB,得S四邊形CDBF最大值,最終得到E點坐標(biāo).(3)設(shè)N點為(n,﹣n1+n+1),1<n<2.過N作NO⊥x軸于點P,得PG=n﹣1.又由直角三角形的判定,得△ABC為直角三角形,由△ABC∽△GNP,得n=1+或n=1﹣(舍去),求得P點坐標(biāo).又由△ABC∽△GNP,且時,得n=3或n=﹣2(舍去).求得P點坐標(biāo).【詳解】解:(1)設(shè)B(x1,5).由A(﹣1,5),對稱軸直線x=.∴解得,x1=2.∴B(2,5).又∵∴b=.∴拋物線解析式為y=,(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年上海c1客運資格證考試
- 城南中學(xué)1#教學(xué)樓施工組織設(shè)計方案
- 銀行下年度工作計劃
- 消防的整改報告模板6篇
- 開展世界讀書日活動方案7篇
- 珍惜時光不負(fù)韶華演講稿范文五篇
- 郊區(qū)閑置土地轉(zhuǎn)讓協(xié)議書(30篇)
- 文秘學(xué)生實習(xí)報告(3篇)
- 工程款付款承諾書
- 新時代青年的使命與擔(dān)當(dāng)9
- 2023年浙江出版聯(lián)團招聘考試真題
- 精神科護士進修匯報
- 期中測試卷(試題)-2024-2025學(xué)年六年級上冊數(shù)學(xué)蘇教版
- 江蘇省揚州市2023-2024學(xué)年高一上學(xué)期物理期中考試試卷(含答案)
- 社群健康助理員職業(yè)技能鑒定考試題庫(含答案)
- 信息技術(shù)初探究(教學(xué)設(shè)計)三年級上冊信息技術(shù)人教版
- 2024人教版道德與法治五年級上冊第四單元:驕人祖先燦爛文化大單元整體教學(xué)設(shè)計
- 人力資源規(guī)劃
- 時代樂章第三課自然之美 課件 2024-2025學(xué)年人教版(2024)初中美術(shù)上冊
- 2024-2030年中國臺球的行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 康師傅智慧供應(yīng)鏈管理:一體化體系與自動補貨優(yōu)化策略
評論
0/150
提交評論