![陜西省博愛中學(xué)2025年初三中考全真模擬卷(四)數(shù)學(xué)試題含解析_第1頁](http://file4.renrendoc.com/view12/M09/22/2D/wKhkGWbqhneAAm4QAAH_BfV7bq4147.jpg)
![陜西省博愛中學(xué)2025年初三中考全真模擬卷(四)數(shù)學(xué)試題含解析_第2頁](http://file4.renrendoc.com/view12/M09/22/2D/wKhkGWbqhneAAm4QAAH_BfV7bq41472.jpg)
![陜西省博愛中學(xué)2025年初三中考全真模擬卷(四)數(shù)學(xué)試題含解析_第3頁](http://file4.renrendoc.com/view12/M09/22/2D/wKhkGWbqhneAAm4QAAH_BfV7bq41473.jpg)
![陜西省博愛中學(xué)2025年初三中考全真模擬卷(四)數(shù)學(xué)試題含解析_第4頁](http://file4.renrendoc.com/view12/M09/22/2D/wKhkGWbqhneAAm4QAAH_BfV7bq41474.jpg)
![陜西省博愛中學(xué)2025年初三中考全真模擬卷(四)數(shù)學(xué)試題含解析_第5頁](http://file4.renrendoc.com/view12/M09/22/2D/wKhkGWbqhneAAm4QAAH_BfV7bq41475.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
陜西省博愛中學(xué)2025年初三中考全真模擬卷(四)數(shù)學(xué)試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值為()A. B. C. D.2.甲、乙兩名同學(xué)在一次用頻率去估計概率的實驗中,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率繪出的統(tǒng)計圖如圖,則符合這一結(jié)果的實驗可能是()A.?dāng)S一枚正六面體的骰子,出現(xiàn)1點的概率B.拋一枚硬幣,出現(xiàn)正面的概率C.從一個裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率D.任意寫一個整數(shù),它能被2整除的概率3.下列圖形中,線段MN的長度表示點M到直線l的距離的是()A. B. C. D.4.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值25.點A(m﹣4,1﹣2m)在第四象限,則m的取值范圍是()A.m> B.m>4C.m<4 D.<m<46.某校數(shù)學(xué)興趣小組在一次數(shù)學(xué)課外活動中,隨機抽查該校10名同學(xué)參加今年初中學(xué)業(yè)水平考試的體育成績,得到結(jié)果如下表所示:下列說法正確的是()A.這10名同學(xué)體育成績的中位數(shù)為38分B.這10名同學(xué)體育成績的平均數(shù)為38分C.這10名同學(xué)體育成績的眾數(shù)為39分D.這10名同學(xué)體育成績的方差為27.下列各式中,正確的是()A.t5·t5=2t5B.t4+t2=t6C.t3·t4=t12D.t2·t3=t58.如圖,是半圓的直徑,點、是半圓的三等分點,弦.現(xiàn)將一飛鏢擲向該圖,則飛鏢落在陰影區(qū)域的概率為()A. B. C. D.9.計算-3-1的結(jié)果是()A.2B.-2C.4D.-410.如圖,將甲、乙、丙、丁四個小正方形中的一個剪掉,使余下的部分不能圍成一個正方體,剪掉的這個小正方形是A.甲 B.乙C.丙 D.丁11.下列圖形中,是正方體表面展開圖的是()A. B. C. D.12.下列幾何體中,主視圖和左視圖都是矩形的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖1是我國古代著名的“趙爽弦圖”的示意圖,它是由四個全等的直角三角形圍成.若較短的直角邊BC=5,將四個直角三角形中較長的直角邊分別向外延長一倍,得到圖2所示的“數(shù)學(xué)風(fēng)車”,若△BCD的周長是30,則這個風(fēng)車的外圍周長是_____.14.計算:sin30°﹣(﹣3)0=_____.15.若一個正多邊形的內(nèi)角和是其外角和的3倍,則這個多邊形的邊數(shù)是______.16.若關(guān)于x的不等式組恰有3個整數(shù)解,則字母a的取值范圍是_____.17.如圖,把矩形紙片OABC放入平面直角坐標(biāo)系中,使OA、OC分別落在x軸、y軸上,連接OB,將紙片OABC沿OB折疊,使點A落在點A′的位置,若OB=,tan∠BOC=,則點A′的坐標(biāo)為_____.18.使分式x2三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在Rt△ABC與Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于點G,過點A作AE∥DB交CB的延長線于點E,過點B作BF∥CA交DA的延長線于點F,AE,BF相交于點H.圖中有若干對三角形是全等的,請你任選一對進行證明;(不添加任何輔助線)證明:四邊形AHBG是菱形;若使四邊形AHBG是正方形,還需在Rt△ABC的邊長之間再添加一個什么條件?請你寫出這個條件.(不必證明)20.(6分)如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.求此拋物線的解析式;求C、D兩點坐標(biāo)及△BCD的面積;若點P在x軸上方的拋物線上,滿足S△PCD=S△BCD,求點P的坐標(biāo).21.(6分)一個不透明的口袋中裝有2個紅球(記為紅球1、紅球2)、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.從中任意摸出1個球,恰好摸到紅球的概率是;先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.22.(8分)拋物線y=ax2+bx+3(a≠0)經(jīng)過點A(﹣1,0),B(,0),且與y軸相交于點C.(1)求這條拋物線的表達(dá)式;(2)求∠ACB的度數(shù);(3)設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時,求點D的坐標(biāo).23.(8分)如圖1,已知∠DAC=90°,△ABC是等邊三角形,點P為射線AD上任意一點(點P與點A不重合),連結(jié)CP,將線段CP繞點C順時針旋轉(zhuǎn)60°得到線段CQ,連結(jié)QB并延長交直線AD于點E.(1)如圖1,猜想∠QEP=°;(2)如圖2,3,若當(dāng)∠DAC是銳角或鈍角時,其它條件不變,猜想∠QEP的度數(shù),選取一種情況加以證明;(3)如圖3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長.24.(10分)A,B兩地相距20km.甲、乙兩人都由A地去B地,甲騎自行車,平均速度為10km/h;乙乘汽車,平均速度為40km/h,且比甲晚1.5h出發(fā).設(shè)甲的騎行時間為x(h)(0≤x≤2)(1)根據(jù)題意,填寫下表:時間x(h)與A地的距離0.51.8_____甲與A地的距離(km)520乙與A地的距離(km)012(2)設(shè)甲,乙兩人與A地的距離為y1(km)和y2(km),寫出y1,y2關(guān)于x的函數(shù)解析式;(3)設(shè)甲,乙兩人之間的距離為y,當(dāng)y=12時,求x的值.25.(10分)為了解某校九年級男生1000米跑的水平,從中隨機抽取部分男生進行測試,并把測試成績分為D、C、B、A四個等次繪制成如圖所示的不完整的統(tǒng)計圖,請你依圖解答下列問題:(1)a=,b=,c=;(2)扇形統(tǒng)計圖中表示C等次的扇形所對的圓心角的度數(shù)為度;(3)學(xué)校決定從A等次的甲、乙、丙、丁四名男生中,隨機選取兩名男生參加全市中學(xué)生1000米跑比賽,請用列表法或畫樹狀圖法,求甲、乙兩名男生同時被選中的概率.26.(12分)如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,M,N均在格點上,P為線段MN上的一個動點(1)MN的長等于_______,(2)當(dāng)點P在線段MN上運動,且使PA2+PB2取得最小值時,請借助網(wǎng)格和無刻度的直尺,在給定的網(wǎng)格中畫出點P的位置,并簡要說明你是怎么畫的,(不要求證明)27.(12分)把0,1,2三個數(shù)字分別寫在三張完全相同的不透明卡片的正面上,把這三張卡片背面朝上,洗勻后放在桌面上,先從中隨機抽取一張卡片,記錄下數(shù)字.放回后洗勻,再從中抽取一張卡片,記錄下數(shù)字.請用列表法或樹狀圖法求兩次抽取的卡片上的數(shù)字都是偶數(shù)的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
根據(jù)銳角三角函數(shù)的定義求出即可.【詳解】解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴tanA=.故選A.本題考查了銳角三角函數(shù)的定義,熟記銳角三角函數(shù)的定義內(nèi)容是解題的關(guān)鍵.2、C【解析】解:A.?dāng)S一枚正六面體的骰子,出現(xiàn)1點的概率為,故此選項錯誤;B.?dāng)S一枚硬幣,出現(xiàn)正面朝上的概率為,故此選項錯誤;C.從一裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率是:≈0.33;故此選項正確;D.任意寫出一個整數(shù),能被2整除的概率為,故此選項錯誤.故選C.3、A【解析】解:圖B、C、D中,線段MN不與直線l垂直,故線段MN的長度不能表示點M到直線l的距離;圖A中,線段MN與直線l垂直,垂足為點N,故線段MN的長度能表示點M到直線l的距離.故選A.4、D【解析】設(shè)拋物線與x軸的兩交點間的橫坐標(biāo)分別為:x1,x2,
由韋達(dá)定理得:x1+x2=m-3,x1?x2=-m,則兩交點間的距離d=|x1-x2|==,∴m=1時,dmin=2.故選D.5、B【解析】
根據(jù)第四象限內(nèi)點的橫坐標(biāo)是正數(shù),縱坐標(biāo)是負(fù)數(shù)列出不等式組,然后求解即可.【詳解】解:∵點A(m-1,1-2m)在第四象限,
∴解不等式①得,m>1,
解不等式②得,m>所以,不等式組的解集是m>1,
即m的取值范圍是m>1.
故選B.本題考查各象限內(nèi)點的坐標(biāo)的符號特征以及解不等式,記住各象限內(nèi)點的坐標(biāo)的符號是解決的關(guān)鍵,四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6、C【解析】試題分析:10名學(xué)生的體育成績中39分出現(xiàn)的次數(shù)最多,眾數(shù)為39;第5和第6名同學(xué)的成績的平均值為中位數(shù),中位數(shù)為:=39;平均數(shù)==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴選項A,B、D錯誤;故選C.考點:方差;加權(quán)平均數(shù);中位數(shù);眾數(shù).7、D【解析】選項A,根據(jù)同底數(shù)冪的乘法可得原式=t10;選項B,不是同類項,不能合并;選項C,根據(jù)同底數(shù)冪的乘法可得原式=t7;選項D,根據(jù)同底數(shù)冪的乘法可得原式=t5,四個選項中只有選項D正確,故選D.8、D【解析】
連接OC、OD、BD,根據(jù)點C,D是半圓O的三等分點,推導(dǎo)出OC∥BD且△BOD是等邊三角形,陰影部分面積轉(zhuǎn)化為扇形BOD的面積,分別計算出扇形BOD的面積和半圓的面積,然后根據(jù)概率公式即可得出答案.【詳解】解:如圖,連接OC、OD、BD,∵點C、D是半圓O的三等分點,∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等邊三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等邊三角形,則∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S陰影=S扇形OBD,S半圓O,飛鏢落在陰影區(qū)域的概率,故選:D.本題主要考查扇形面積的計算和幾何概率問題:概率=相應(yīng)的面積與總面積之比,解題的關(guān)鍵是把求不規(guī)則圖形的面積轉(zhuǎn)化為求規(guī)則圖形的面積.9、D【解析】試題解析:-3-1=-3+(-1)=-(3+1)=-1.故選D.10、D【解析】解:將如圖所示的圖形剪去一個小正方形,使余下的部分不能圍成一個正方體,編號為甲乙丙丁的小正方形中剪去的是?。蔬xD.11、C【解析】
利用正方體及其表面展開圖的特點解題.【詳解】解:A、B、D經(jīng)過折疊后,下邊沒有面,所以不可以圍成正方體,C能折成正方體.故選C.本題考查了正方體的展開圖,解題時牢記正方體無蓋展開圖的各種情形.12、C【解析】
主視圖、左視圖是分別從物體正面、左面和上面看,所得到的圖形.依此即可求解.【詳解】A.主視圖為圓形,左視圖為圓,故選項錯誤;B.主視圖為三角形,左視圖為三角形,故選項錯誤;C.主視圖為矩形,左視圖為矩形,故選項正確;D.主視圖為矩形,左視圖為圓形,故選項錯誤.故答案選:C.本題考查的知識點是截一個幾何體,解題的關(guān)鍵是熟練的掌握截一個幾何體.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、71【解析】分析:由題意∠ACB為直角,利用勾股定理求得外圍中一條邊,又由AC延伸一倍,從而求得風(fēng)車的一個輪子,進一步求得四個.詳解:依題意,設(shè)“數(shù)學(xué)風(fēng)車”中的四個直角三角形的斜邊長為x,AC=y,則x2=4y2+52,∵△BCD的周長是30,∴x+2y+5=30則x=13,y=1.∴這個風(fēng)車的外圍周長是:4(x+y)=4×19=71.故答案是:71.點睛:本題考查了勾股定理在實際情況中的應(yīng)用,注意隱含的已知條件來解答此類題.14、-【解析】
sin30°=,a0=1(a≠0)【詳解】解:原式=-1=-故答案為:-.本題考查了30°的角的正弦值和非零數(shù)的零次冪.熟記是關(guān)鍵.15、8【解析】
解:設(shè)邊數(shù)為n,由題意得,180(n-2)=3603解得n=8.所以這個多邊形的邊數(shù)是8.16、﹣2≤a<﹣1.【解析】
先確定不等式組的整數(shù)解,再求出a的范圍即可.【詳解】∵關(guān)于x的不等式組恰有3個整數(shù)解,∴整數(shù)解為1,0,﹣1,∴﹣2≤a<﹣1,故答案為:﹣2≤a<﹣1.本題考查了一元一次不等式組的整數(shù)解的應(yīng)用,能根據(jù)已知不等式組的解集和整數(shù)解確定a的取值范圍是解此題的關(guān)鍵.17、【解析】
如圖,作輔助線;根據(jù)題意首先求出AB、BC的長度;借助面積公式求出A′D、OD的長度,即可解決問題.【詳解】解:∵四邊形OABC是矩形,∴OA=BC,AB=OC,tan∠BOC==,∴AB=2OA,∵,OB=,∴OA=2,AB=2.∵OA′由OA翻折得到,∴OA′=OA=2.如圖,過點A′作A′D⊥x軸與點D;設(shè)A′D=a,OD=b;∵四邊形ABCO為矩形,∴∠OAB=∠OCB=90°;四邊形ABA′D為梯形;設(shè)AB=OC=a,BC=AO=b;∵OB=,tan∠BOC=,∴,解得:;由題意得:A′O=AO=2;△ABO≌△A′BO;由勾股定理得:x2+y2=2①,由面積公式得:xy+2××2×2=(x+2)×(y+2)②;聯(lián)立①②并解得:x=,y=.故答案為(?,)該題以平面直角坐標(biāo)系為載體,以翻折變換為方法構(gòu)造而成;綜合考查了矩形的性質(zhì)、三角函數(shù)的定義、勾股定理等幾何知識點;對分析問題解決問題的能力提出了較高的要求.18、1【解析】試題分析:根據(jù)題意可知這是分式方程,x2答案為1.考點:分式方程的解法三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(2)詳見解析;(3)需要添加的條件是AB=BC.【解析】試題分析:(1)可根據(jù)已知條件,或者圖形的對稱性合理選擇全等三角形,如△ABC≌△BAD,利用SAS可證明.(2)由已知可得四邊形AHBG是平行四邊形,由(1)可知∠ABD=∠BAC,得到△GAB為等腰三角形,?AHBG的兩鄰邊相等,從而得到平行四邊形AHBG是菱形.試題解析:(1)解:△ABC≌△BAD.證明:∵AD=BC,∠ABC=∠BAD=90°,AB=BA,∴△ABC≌△BAD(SAS).(2)證明:∵AH∥GB,BH∥GA,∴四邊形AHBG是平行四邊形.∵△ABC≌△BAD,∴∠ABD=∠BAC.∴GA=GB.∴平行四邊形AHBG是菱形.(3)需要添加的條件是AB=BC.點睛:本題考查全等三角形,四邊形等幾何知識,考查幾何論證和思維能力,第(3)小題是開放題,答案不唯一.20、(1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+,),或P(1﹣,)【解析】
(1)設(shè)拋物線頂點式解析式y(tǒng)=a(x-1)2+4,然后把點B的坐標(biāo)代入求出a的值,即可得解;
(2)令y=0,解方程得出點C,D坐標(biāo),再用三角形面積公式即可得出結(jié)論;
(3)先根據(jù)面積關(guān)系求出點P的坐標(biāo),求出點P的縱坐標(biāo),代入拋物線解析式即可求出點P的坐標(biāo).【詳解】解:(1)、∵拋物線的頂點為A(1,4),∴設(shè)拋物線的解析式y(tǒng)=a(x﹣1)2+4,把點B(0,3)代入得,a+4=3,解得a=﹣1,∴拋物線的解析式為y=﹣(x﹣1)2+4;(2)由(1)知,拋物線的解析式為y=﹣(x﹣1)2+4;令y=0,則0=﹣(x﹣1)2+4,∴x=﹣1或x=3,∴C(﹣1,0),D(3,0);∴CD=4,∴S△BCD=CD×|yB|=×4×3=6;(3)由(2)知,S△BCD=CD×|yB|=×4×3=6;CD=4,∵S△PCD=S△BCD,∴S△PCD=CD×|yP|=×4×|yP|=3,∴|yP|=,∵點P在x軸上方的拋物線上,∴yP>0,∴yP=,∵拋物線的解析式為y=﹣(x﹣1)2+4;∴=﹣(x﹣1)2+4,∴x=1±,∴P(1+,),或P(1﹣,).本題考查的是二次函數(shù)的綜合應(yīng)用,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.21、(1)(2)【解析】試題分析:(1)因為總共有4個球,紅球有2個,因此可直接求得紅球的概率;(2)根據(jù)題意,列表表示小球摸出的情況,然后找到共12種可能,而兩次都是紅球的情況有2種,因此可求概率.試題解析:解:(1).(2)用表格列出所有可能的結(jié)果:第二次
第一次
紅球1
紅球2
白球
黑球
紅球1
(紅球1,紅球2)
(紅球1,白球)
(紅球1,黑球)
紅球2
(紅球2,紅球1)
(紅球2,白球)
(紅球2,黑球)
白球
(白球,紅球1)
(白球,紅球2)
(白球,黑球)
黑球
(黑球,紅球1)
(黑球,紅球2)
(黑球,白球)
由表格可知,共有12種可能出現(xiàn)的結(jié)果,并且它們都是等可能的,其中“兩次都摸到紅球”有2種可能.∴P(兩次都摸到紅球)==.考點:概率統(tǒng)計22、(1)y=﹣2x2+x+3;(2)∠ACB=41°;(3)D(,).【解析】試題分析:把點的坐標(biāo)代入即可求得拋物線的解析式.作BH⊥AC于點H,求出的長度,即可求出∠ACB的度數(shù).延長CD交x軸于點G,△DCE∽△AOC,只可能∠CAO=∠DCE.求出直線的方程,和拋物線的方程聯(lián)立即可求得點的坐標(biāo).試題解析:(1)由題意,得解得.∴這條拋物線的表達(dá)式為.(2)作BH⊥AC于點H,∵A點坐標(biāo)是(-1,0),C點坐標(biāo)是(0,3),B點坐標(biāo)是(,0),∴AC=,AB=,OC=3,BC=.∵,即∠BAD=,∴.Rt△BCH中,,BC=,∠BHC=90o,∴.又∵∠ACB是銳角,∴.(3)延長CD交x軸于點G,∵Rt△AOC中,AO=1,AC=,∴.∵△DCE∽△AOC,∴只可能∠CAO=∠DCE.∴AG=CG.∴.∴AG=1.∴G點坐標(biāo)是(4,0).∵點C坐標(biāo)是(0,3),∴.∴解得,(舍).∴點D坐標(biāo)是23、(1)∠QEP=60°;(2)∠QEP=60°,證明詳見解析;(3)【解析】
(1)如圖1,先根據(jù)旋轉(zhuǎn)的性質(zhì)和等邊三角形的性質(zhì)得出∠PCA=∠QCB,進而可利用SAS證明△CQB≌△CPA,進而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的內(nèi)角和定理即可求得∠QEP=∠QCP,從而完成猜想;(2)以∠DAC是銳角為例,如圖2,仿(1)的證明思路利用SAS證明△ACP≌△BCQ,可得∠APC=∠Q,進一步即可證得結(jié)論;(3)仿(2)可證明△ACP≌△BCQ,于是AP=BQ,再求出AP的長即可,作CH⊥AD于H,如圖3,易證∠APC=30°,△ACH為等腰直角三角形,由AC=4可求得CH、PH的長,于是AP可得,問題即得解決.【詳解】解:(1)∠QEP=60°;證明:連接PQ,如圖1,由題意得:PC=CQ,且∠PCQ=60°,∵△ABC是等邊三角形,∴∠ACB=60°,∴∠PCA=∠QCB,則在△CPA和△CQB中,,∴△CQB≌△CPA(SAS),∴∠CQB=∠CPA,又因為△PEM和△CQM中,∠EMP=∠CMQ,∴∠QEP=∠QCP=60°.故答案為60;(2)∠QEP=60°.以∠DAC是銳角為例.證明:如圖2,∵△ABC是等邊三角形,∴AC=BC,∠ACB=60°,∵線段CP繞點C順時針旋轉(zhuǎn)60°得到線段CQ,∴CP=CQ,∠PCQ=60°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴∠APC=∠Q,∵∠1=∠2,∴∠QEP=∠PCQ=60°;
(3)連結(jié)CQ,作CH⊥AD于H,如圖3,與(2)一樣可證明△ACP≌△BCQ,∴AP=BQ,∵∠DAC=135°,∠ACP=15°,∴∠APC=30°,∠CAH=45°,∴△ACH為等腰直角三角形,∴AH=CH=AC=×4=,在Rt△PHC中,PH=CH=,∴PA=PH?AH=-,∴BQ=?.本題考查了等邊三角形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)和有關(guān)計算、30°角的直角三角形的性質(zhì)等知識,涉及的知識點多、綜合性強,靈活應(yīng)用全等三角形的判定和性質(zhì)、熟練掌握旋轉(zhuǎn)的性質(zhì)和相關(guān)圖形的性質(zhì)是解題的關(guān)鍵.24、(1)18,2,20(2)(3)當(dāng)y=12時,x的值是1.2或1.6【解析】
(Ⅰ)根據(jù)路程、時間、速度三者間的關(guān)系通過計算即可求得相應(yīng)答案;(Ⅱ)根據(jù)路程=速度×?xí)r間結(jié)合甲、乙的速度以及時間范圍即可求得答案;(Ⅲ)根據(jù)題意,得,然后分別將y=12代入即可求得答案.【詳解】(Ⅰ)由題意知:甲、乙二人平均速度分別是平均速度為10km/h和40km/h,且比甲晚1.5h出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代小區(qū)火災(zāi)應(yīng)急救援隊伍的實戰(zhàn)化訓(xùn)練探討
- 現(xiàn)代企業(yè)員工激勵機制設(shè)計與實踐
- 班級環(huán)境衛(wèi)生與校園文化建設(shè)的結(jié)合
- 4《機械擺鐘》說課稿-2023-2024學(xué)年科學(xué)五年級上冊教科版
- 2023七年級數(shù)學(xué)上冊 第3章 一次方程與方程組3.2 一元一次方程的應(yīng)用第1課時 等積變形和行程問題說課稿 (新版)滬科版
- Unit 4 Plants around us Part A Let's learn(說課稿)-2024-2025學(xué)年人教PEP版(2024)英語三年級上冊
- 2024-2025學(xué)年新教材高中英語 Unit 3 The world meets China預(yù)習(xí) 新知早知道1(教用文檔)說課稿 外研版選擇性必修第四冊
- 2025日本食品業(yè)A公司特許合同樣本
- 2025年銀行擔(dān)保借款合同范本
- 1小蝌蚪找媽媽 說課稿-2024-2025學(xué)年語文二年級上冊統(tǒng)編版
- 2023-2024年同等學(xué)力經(jīng)濟學(xué)綜合真題及參考答案
- 農(nóng)村集體土地使用權(quán)轉(zhuǎn)讓協(xié)議
- 課件四露天礦山安全知識培訓(xùn)
- 2025年高考數(shù)學(xué)模擬卷(一)含答案及解析
- 大單元教學(xué)理念及其定義、特點與實施策略
- 屋頂分布式光伏發(fā)電項目光伏組件技術(shù)要求
- 職業(yè)技術(shù)學(xué)院《裝配式混凝土構(gòu)件生產(chǎn)與管理》課程標(biāo)準(zhǔn)
- 2023光伏并網(wǎng)柜技術(shù)規(guī)范
- DBJ15 31-2016建筑地基基礎(chǔ)設(shè)計規(guī)范(廣東省標(biāo)準(zhǔn))
- 北師大版八年級數(shù)學(xué)下冊課時同步練習(xí)【全冊每課齊全含答案】
- 小學(xué)德育養(yǎng)成教育工作分層實施方案
評論
0/150
提交評論