版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江蘇省南通市田家炳中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),若直線與直線平行,則的值為()A. B.C.或 D.2.橢圓上一點(diǎn)到一個(gè)焦點(diǎn)的距離為,則到另一個(gè)焦點(diǎn)的距離是()A. B.C. D.3.已知正四面體的底面的中心為為的中點(diǎn),則直線與所成角的余弦值為()A. B.C. D.4.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B.C. D.5.已知函數(shù)為偶函數(shù),則在處的切線方程為()A. B.C. D.6.已知雙曲線的焦點(diǎn)為,,其漸近線上橫坐標(biāo)為的點(diǎn)滿足,則()A. B.C.2 D.47.若拋物線x2=8y上一點(diǎn)P到焦點(diǎn)的距離為9,則點(diǎn)P的縱坐標(biāo)為()A. B.C.6 D.78.在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限9.設(shè)拋物線的焦點(diǎn)為,點(diǎn)為拋物線上一點(diǎn),點(diǎn)坐標(biāo)為,則的最小值為()A. B.C. D.10.平行六面體中,若,則()A. B.1C. D.11.已知數(shù)列的通項(xiàng)公式是,則()A10100 B.-10100C.5052 D.-505212.已知橢圓方程為,點(diǎn)在橢圓上,右焦點(diǎn)為F,過原點(diǎn)的直線與橢圓交于A,B兩點(diǎn),若,則橢圓的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.隨機(jī)投擲一枚均勻的硬幣兩次,則兩次都正面朝上的概率為______14.直線的傾斜角為_______________.15.已知,,若,則______16.經(jīng)過兩點(diǎn)的直線的傾斜角為,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)雙曲線的左、右焦點(diǎn)分別為,,且,一條漸近線的傾斜角為60°(1)求雙曲線C的標(biāo)準(zhǔn)方程和離心率;(2)求分別以,為左、右頂點(diǎn),短軸長等于雙曲線虛軸長的橢圓的標(biāo)準(zhǔn)方程18.(12分)如圖,在直三棱柱中,,,與交于點(diǎn),為的中點(diǎn),(1)求證:平面;(2)求證:平面平面19.(12分)已知函數(shù)f(x)=ax-2lnx(1)討論f(x)的單調(diào)性;(2)設(shè)函數(shù)g(x)=x-2,若存在,使得f(x)≤g(x),求a的取值范圍20.(12分)已知中,內(nèi)角的對邊分別為,且滿足.(1)求的值;(2)若,求面積的最大值.21.(12分)如圖1,在中,,,,分別是,邊上的中點(diǎn),將沿折起到的位置,使,如圖2(1)求點(diǎn)到平面距離;(2)在線段上是否存在一點(diǎn),使得平面與平面夾角的余弦值為.若存在,求出長;若不存在,請說明理由22.(10分)已知橢圓焦距為,點(diǎn)在橢圓C上(1)求橢圓C的方程;(2)過點(diǎn)的直線與C交于M,N兩點(diǎn),點(diǎn)R是直線上任意一點(diǎn),設(shè)直線的斜率分別為,若,求的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)直線的一般式判斷平行的條件進(jìn)行計(jì)算.【詳解】時(shí),容易驗(yàn)證兩直線不平行,當(dāng)時(shí),根據(jù)兩直線平行的條件可知:,解得或.故選:C.2、B【解析】利用橢圓的定義可得結(jié)果.【詳解】在橢圓中,,由橢圓的定義可知,到另一個(gè)焦點(diǎn)的距離是.故選:B.3、B【解析】連接,再取中點(diǎn),連接,得到為直線與所成角,再解三角形即可.【詳解】連接,再取中點(diǎn),連接,因?yàn)榉謩e為VC,中點(diǎn),則,且底面,所以為直線與所成角,令正四面體邊長為1,則,,,所以,故選:.4、B【解析】寫出每次循環(huán)的結(jié)果,即可得到答案.【詳解】當(dāng)時(shí),,,,;,此時(shí),退出循環(huán),輸出的的為.故選:B【點(diǎn)睛】本題考查程序框圖的應(yīng)用,此類題要注意何時(shí)循環(huán)結(jié)束,建議數(shù)據(jù)不大時(shí)采用寫出來的辦法,是一道容易題.5、A【解析】根據(jù)函數(shù)是偶函數(shù)可得,可求出,求出函數(shù)在處的導(dǎo)數(shù)值即為切線斜率,即可求出切線方程.【詳解】函數(shù)為偶函數(shù),,即,解得,,則,,且,切線方程為,整理得.故選:A.【點(diǎn)睛】本題考查函數(shù)奇偶性的應(yīng)用,考查利用導(dǎo)數(shù)求切線方程,屬于基礎(chǔ)題.6、B【解析】由題意可設(shè),則,再由,可得,從而可求出的值【詳解】解:雙曲線的漸近線方程為,故設(shè),設(shè),則,因?yàn)椋?,即,所以,因?yàn)?,所以,因?yàn)?,所以,故選:B7、D【解析】設(shè)出P的縱坐標(biāo),利用拋物線的定義列出方程,求出答案.【詳解】由題意得:拋物線準(zhǔn)線方程為,P點(diǎn)到拋物線的焦點(diǎn)的距離等于到準(zhǔn)線的距離,設(shè)點(diǎn)縱坐標(biāo)為,則,解得:.故選:D8、D【解析】根據(jù)復(fù)數(shù)在復(fù)平面內(nèi)的坐標(biāo)表示可得答案.【詳解】解:由題意得:在復(fù)平面上對應(yīng)的點(diǎn)為,該點(diǎn)在第四象限.故選:D9、B【解析】設(shè)點(diǎn)P在準(zhǔn)線上的射影為D,則根據(jù)拋物線的定義可知|PF|=|PD|,進(jìn)而把問題轉(zhuǎn)化為求|PM|+|PD|的最小值,即可求解【詳解】解:由題意,設(shè)點(diǎn)P在準(zhǔn)線上的射影為D,則根據(jù)拋物線的定義可知|PF|=|PD|,所以要求|PM|+|PF|的最小值,即求|PM|+|PD|的最小值,當(dāng)D,P,M三點(diǎn)共線時(shí),|PM|+|PD|取得最小值為故選:B10、D【解析】根據(jù)空間向量的運(yùn)算,表示出,和已知比較可求得的值,進(jìn)而求得答案.【詳解】在平行六面體中,有,故由題意可知:,即,所以,故選:D.11、D【解析】根據(jù)已知條件,用并項(xiàng)求和法即可求得結(jié)果.【詳解】∵∴∴.故選:D.12、A【解析】根據(jù)橢圓的性質(zhì)可得,則橢圓方程可求.【詳解】由點(diǎn)在橢圓上得,由橢圓的對稱性可得,則,故橢圓方程為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】列舉出所有情況,利用古典概型的概率公式求解即可【詳解】隨機(jī)投擲一枚均勻的硬幣兩次,共有:正正,正反,反正,反反共4種情況,兩次都是正面朝上的有:正正1種情況,所以兩次都正面朝上的概率為,故答案為:14、【解析】由直線的斜率為,得到,即可求解.【詳解】由題意,可知直線的斜率為,設(shè)直線的傾斜角為,則,解得,即換線的傾斜角為.【點(diǎn)睛】本題主要考查直線的傾斜角的求解問題,其中解答中熟記直線的傾斜角與斜率的關(guān)系,合理準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.15、【解析】根據(jù)空間向量垂直得到等量關(guān)系,求出答案.【詳解】由題意得:,解得:故答案為:16、2【解析】由兩點(diǎn)間的斜率公式及直線斜率的定義即可求解.【詳解】解:因?yàn)檫^兩點(diǎn)的直線的傾斜角為,所以,解得,故答案為:2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),2(2)【解析】(1)結(jié)合,聯(lián)立即得解;(2)由題意,即得解.【詳解】(1)由題意,又解得:故雙曲線C的標(biāo)準(zhǔn)方程為:,離心率為(2)由題意橢圓的焦點(diǎn)在軸上,設(shè)橢圓方程為故即橢圓方程為:18、(1)證明見解析(2)證明見解析【解析】(1)根據(jù)直棱柱的性質(zhì)、平行四邊形的性質(zhì),結(jié)合三角形中位線定理、線面平行的判定定理進(jìn)行證明即可;(2)根據(jù)直棱柱的性質(zhì)、菱形的判定定理和性質(zhì),結(jié)合線面垂直的判定定理、面面垂直的判定定理進(jìn)行證明即可.【小問1詳解】在直三棱柱中,,且四邊形平行四邊形,又,則為的中點(diǎn),又為的中點(diǎn),故,即:,且平面,平面,所以平面;【小問2詳解】在直三棱柱中,平面,平面,則,且,,平面,故平面,因?yàn)槠矫?,所以,又在平行四邊形中,,則四邊形菱形,所以,且,平面,故平面,因?yàn)槠矫妫云矫嫫矫?19、(1)答案見解析;(2).【解析】(1)根據(jù)實(shí)數(shù)a的正負(fù)性,結(jié)合導(dǎo)數(shù)的性質(zhì)分類討論求解即可;(2)利用常變量分離法,通過構(gòu)造函數(shù),利用導(dǎo)數(shù)的性質(zhì)進(jìn)行求解即可.【小問1詳解】當(dāng)a≤0時(shí),在(0,+∞)上恒成立;當(dāng)a>0時(shí),令得;令得;綜上:a≤0時(shí)f(x)在(0,+∞)上單調(diào)遞減;a>0時(shí),f(x)在上單調(diào)遞減,在上單調(diào)遞增;【小問2詳解】由題意知ax-2lnx≤x-2在(0,+∞)上有解則ax≤x-2+2lnx,令,xg'(x)+0-g(x)↗極大值↘所以,因此有所以a的取值范圍為:【點(diǎn)睛】關(guān)鍵點(diǎn)睛:運(yùn)用常變量分離法利用導(dǎo)數(shù)的性質(zhì)是解題的關(guān)鍵.20、(1)2;(2).【解析】(1)利用正弦定理以及逆用兩角和的正弦公式得出,而,即可求出的值;(2)根據(jù)題意,由余弦定理得,再根據(jù)基本不等式求得,當(dāng)且僅當(dāng)時(shí)取得等號(hào),即可求出面積的最大值.【小問1詳解】解:由題意得,由正弦定理得:,即,即,因?yàn)?,所以【小?詳解】解:由余弦定理,即,由基本不等式得:,即,當(dāng)且僅當(dāng)時(shí)取得等號(hào),,所以面積的最大值為21、(1)(2)存在,【解析】(1)根據(jù)題意分別由已知條件計(jì)算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標(biāo)系,設(shè),然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結(jié)果【小問1詳解】在中,,因?yàn)?,分別是,邊上的中點(diǎn),所以∥,,所以,所以,因?yàn)椋云矫?,所以平面,因?yàn)槠矫?,所以,所以,因?yàn)槠矫?,平面,所以平面平面,因?yàn)?,所以,因?yàn)?,所以是等邊三角形,取的中點(diǎn),連接,則,,因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,在中,,所以邊上的高為,所以,在梯形中,,設(shè)點(diǎn)到平面的距離為,因?yàn)?,所以,所以,得,所以點(diǎn)到平面的距離為【小問2詳解】由(1)可知平面,,所以以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,設(shè),則,設(shè)平面的法向量為,則,令,則,設(shè)平面的法向量為,則,令,則,則平面與平面夾角的余弦值為,兩邊平方得,,解得或(舍去),所以,所以22、(1);(2).【解析】(1)由焦距為解出,再把點(diǎn)代入橢圓方程中,即可解出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)人抵押貸款協(xié)議模板版
- 專業(yè)借款中介服務(wù)協(xié)議2024版B版
- 月度團(tuán)隊(duì)總結(jié)模板
- 2025年度茶葉品牌加盟連鎖經(jīng)營協(xié)議范本4篇
- 個(gè)人吊車租賃協(xié)議
- 二零二五年度跨境電商進(jìn)口貿(mào)易合同樣本3篇
- 2025年度智能家居系統(tǒng)定制銷售合同4篇
- 2025年度智能交通管理系統(tǒng)全國代理合同4篇
- 二零二五年度存單質(zhì)押養(yǎng)老產(chǎn)業(yè)金融服務(wù)合同3篇
- 2024版移動(dòng)通信網(wǎng)絡(luò)建設(shè)與維護(hù)合同
- 農(nóng)民工工資表格
- 【寒假預(yù)習(xí)】專題04 閱讀理解 20篇 集訓(xùn)-2025年人教版(PEP)六年級(jí)英語下冊寒假提前學(xué)(含答案)
- 2024年突發(fā)事件新聞發(fā)布與輿論引導(dǎo)合同
- 地方政府信訪人員穩(wěn)控實(shí)施方案
- 小紅書推廣合同范例
- 商業(yè)咨詢報(bào)告范文模板
- 2024年智能監(jiān)獄安防監(jiān)控工程合同3篇
- 幼兒園籃球課培訓(xùn)
- AQ 6111-2023個(gè)體防護(hù)裝備安全管理規(guī)范知識(shí)培訓(xùn)
- 老干工作業(yè)務(wù)培訓(xùn)
- 基底節(jié)腦出血護(hù)理查房
評論
0/150
提交評論