版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廈門灌口中學(xué)2025屆高二上數(shù)學(xué)期末考試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某綜合實(shí)踐小組設(shè)計(jì)了一個(gè)“雙曲線型花瓶”.他們的設(shè)計(jì)思路是將某雙曲線的一部分(圖1中A,C之間的曲線)繞其虛軸所在直線l旋轉(zhuǎn)一周,得到花瓶的側(cè)面,花瓶底部是平整的圓面,如圖2.該小組給出了圖1中的相關(guān)數(shù)據(jù):,,,,,其中B是雙曲線的一個(gè)頂點(diǎn).小組中甲、乙、丙、丁四位同學(xué)分別用不同的方法估算了該花瓶的容積(忽略瓶壁和底部的厚度),結(jié)果如下表所示學(xué)生甲乙丙丁估算結(jié)果()其中估算結(jié)果最接近花瓶的容積的同學(xué)是()(參考公式:,,)A.甲 B.乙C.丙 D.丁2.直線過(guò)橢圓內(nèi)一點(diǎn),若點(diǎn)為弦的中點(diǎn),設(shè)為直線的斜率,為直線的斜率,則的值為()A. B.C. D.3.已知四棱柱ABCD-A1B1C1D1的底面是邊長(zhǎng)為2的正方形,側(cè)棱與底面垂直,若點(diǎn)C到平面AB1D1的距離為,則直線與平面所成角的余弦值為()A. B.C. D.4.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.下列雙曲線中,焦點(diǎn)在軸上且漸近線方程為的是A. B.C. D.6.若雙曲線的漸近線方程為,則的值為()A.2 B.3C.4 D.67.命題“?x∈R,|x|+x2≥0”的否定是()A.?x∈R,|x|+x2<0 B.?x∈R,|x|+x2≤0C.?x0∈R,|x0|+<0 D.?x0∈R,|x0|+≥08.直線分別與曲線,交于,兩點(diǎn),則的最小值為()A. B.1C. D.29.已知函數(shù),.若存在三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.10.設(shè)函數(shù)在R上可導(dǎo),則()A. B.C. D.以上都不對(duì)11.已知圓:,是直線的一點(diǎn),過(guò)點(diǎn)作圓的切線,切點(diǎn)為,,則的最小值為()A. B.C. D.12.已知向量,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù),滿足不等式組,則目標(biāo)函數(shù)的最大值為__________.14.如圖,已知AB,CD分別是圓柱上、下底面圓的直徑,且,若該圓柱的底面圓直徑是其母線長(zhǎng)的2倍,則異面直線AC與BD所成角的余弦值為______15.某校組織了一場(chǎng)演講比賽,五位評(píng)委對(duì)某位參賽選手的評(píng)分分別為9,x,8,y,9.已知這組數(shù)據(jù)的平均數(shù)為8.6,方差為0.24,則______16.已知圓的圓心與點(diǎn)關(guān)于直線對(duì)稱,直線與圓相交于、兩點(diǎn),且,則圓的方程為_________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,底面為矩形,平面平面,.(1)證明:平面平面;(2)若,為棱的中點(diǎn),,,求二面角的余弦值18.(12分)某工廠修建一個(gè)長(zhǎng)方體無(wú)蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元.設(shè)池底長(zhǎng)方形長(zhǎng)為x米(1)求底面積,并用含x的表達(dá)式表示池壁面積;(2)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?19.(12分)某班主任對(duì)全班名學(xué)生進(jìn)行了作業(yè)量多少與手機(jī)網(wǎng)游的調(diào)查,數(shù)據(jù)如下表:認(rèn)為作業(yè)多認(rèn)為作業(yè)不多總數(shù)喜歡手機(jī)網(wǎng)游不喜歡手機(jī)網(wǎng)游總數(shù)(1)若隨機(jī)地抽問(wèn)這個(gè)班的一名學(xué)生,分別求事件“認(rèn)為作業(yè)不多”和事件“喜歡手機(jī)網(wǎng)游且認(rèn)為作業(yè)多”的概率;(2)若在“認(rèn)為作業(yè)多”的學(xué)生中已經(jīng)用分層抽樣的方法選取了名學(xué)生.現(xiàn)要從這名學(xué)生中任取名學(xué)生了解情況,求其中恰有名“不喜歡手機(jī)網(wǎng)游”的學(xué)生的概率20.(12分)如圖,在長(zhǎng)方體中,,點(diǎn)E在棱上運(yùn)動(dòng)(1)證明:;(2)當(dāng)E為棱的中點(diǎn)時(shí),求直線與平面所成角的正弦值;(3)等于何值時(shí),二面角的大小為?21.(12分)設(shè)函數(shù)過(guò)點(diǎn)(1)求函數(shù)的單調(diào)區(qū)間和極值(要列表);(2)求函數(shù)在上的最大值和最小值.22.(10分)已知在公差不為0的等差數(shù)列中,,且構(gòu)成等比數(shù)列的前三項(xiàng)(1)求數(shù)列,的通項(xiàng)公式;(2)設(shè)數(shù)列___________,求數(shù)列的前項(xiàng)和請(qǐng)?jiān)冖?;②;③這三個(gè)條件中選擇一個(gè),補(bǔ)充在上面的橫線上,并完成解答
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)幾何體可分割為圓柱和曲邊圓錐,利用圓柱和圓錐的體積公式對(duì)幾何體的體積進(jìn)行估計(jì)即可.【詳解】可將幾何體看作一個(gè)以為半徑,高為的圓柱,再加上兩個(gè)曲邊圓錐,其中底面半徑分別為,,高分別為,,,,所以花瓶的容積,故最接近的是丁同學(xué)的估算,故選:D2、A【解析】設(shè)點(diǎn)與的坐標(biāo),進(jìn)而可表示與,再結(jié)合兩點(diǎn)在橢圓上,可得的值.【詳解】設(shè)點(diǎn)與,則,,所以,,又點(diǎn)與在橢圓上,所以,,作差可得,即,所以,故選:A.3、A【解析】先由等面積法求得的長(zhǎng),再以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,運(yùn)用線面角的向量求解方法可得答案【詳解】如圖,連接交于點(diǎn),過(guò)點(diǎn)作于,則平面,則,設(shè),則,則根據(jù)三角形面積得,代入解得以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系則,,設(shè)平面的法向量為,,,則,即,令,得,所以直線與平面所成的角的余弦值為,故選:4、C【解析】利用函數(shù)在上單調(diào)遞減即可求解.【詳解】解:因?yàn)楹瘮?shù)在上單調(diào)遞減,所以若,,則;反之若,,則.所以若,則“”是“”的充要條件,故選:C.5、C【解析】焦點(diǎn)在軸上的是C和D,漸近線方程為,故選C考點(diǎn):1.雙曲線的標(biāo)準(zhǔn)方程;2.雙曲線的簡(jiǎn)單幾何性質(zhì)6、A【解析】根據(jù)雙曲線方程確定焦點(diǎn)位置,再根據(jù)漸近線方程為求解.【詳解】因?yàn)殡p曲線所以焦點(diǎn)在x軸上,又因?yàn)闈u近線方程為,所以,所以.故選:A【點(diǎn)睛】本題主要考查雙曲線的幾何性質(zhì),還考查了理解辨析的能力,屬于基礎(chǔ)題.7、C【解析】利用全稱命題的否定可得出結(jié)論.【詳解】由全稱命題的否定可知,命題“,”的否定是“,”.故選:C.8、B【解析】設(shè),,,,得到,用導(dǎo)數(shù)法求解.【詳解】解:設(shè),,,,則,,,令,則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,時(shí),函數(shù)的最小值為1,故選:B9、B【解析】根據(jù)題意,當(dāng)時(shí),有一個(gè)零點(diǎn),進(jìn)而將問(wèn)題轉(zhuǎn)化為當(dāng)時(shí),有兩個(gè)實(shí)數(shù)根,再研究函數(shù)即可得答案.【詳解】解:因?yàn)榇嬖谌齻€(gè)零點(diǎn),所以方程有三個(gè)實(shí)數(shù)根,因?yàn)楫?dāng)時(shí),由得,解得,有且只有一個(gè)實(shí)數(shù)根,所以當(dāng)時(shí),有兩個(gè)實(shí)數(shù)根,即有兩個(gè)實(shí)數(shù)根,所以令,則,所以當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,因?yàn)?,,,所以的圖象如圖所示,所以有兩個(gè)實(shí)數(shù)根,則故選:B10、B【解析】根據(jù)極限的定義計(jì)算【詳解】由題意故選:B11、A【解析】根據(jù)題意,為四邊形的面積的2倍,即,然后利用切線長(zhǎng)定理,將問(wèn)題轉(zhuǎn)化為圓心到直線的距離求解.【詳解】圓:的圓心為,半徑,設(shè)四邊形的面積為,由題設(shè)及圓的切線性質(zhì)得,,∵,∴,圓心到直線的距離為,∴的最小值為,則的最小值為,故選:A12、B【解析】根據(jù)向量加減法運(yùn)算的坐標(biāo)表示即可得到結(jié)果【詳解】故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】畫出可行域,通過(guò)平移基準(zhǔn)直線到可行域邊界來(lái)求得的最大值.【詳解】,畫出可行域如下圖所示,由圖可知,當(dāng)時(shí),取得最大值.故答案為:14、.【解析】利用空間向量夾角公式進(jìn)行求解即可.【詳解】取CD的中點(diǎn)O,以O(shè)為原點(diǎn),以CD所在直線為x軸,以底面內(nèi)過(guò)點(diǎn)O且與CD垂直的直線為y軸,以過(guò)點(diǎn)O且與底面垂直的直線為z軸,建立如圖所示的空間直角坐標(biāo)系設(shè),則,,,,,,所以,所以異面直線AC與BD所成角的余弦值為故答案為:15、1【解析】根據(jù)平均數(shù)和方差的計(jì)算公式,求得,則問(wèn)題得解.【詳解】由題可知:整理得:;,整理得:,聯(lián)立方程組得,解得或,對(duì)應(yīng)或,故.故答案為:1.16、【解析】利用對(duì)稱條件求出圓心C的坐標(biāo),借助直線被圓所截弦長(zhǎng)求出圓半徑即可寫出圓的方程.【詳解】設(shè)圓的圓心,依題意,,解得,即圓心,點(diǎn)C到直線的距離,因圓截直線所得弦AB長(zhǎng)為6,于是得圓C的半徑所以圓的方程為:.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)【解析】分析:(1)由四邊形為矩形,可得,再由已知結(jié)合面面垂直的性質(zhì)可得平面,進(jìn)一步得到,再由,利用線面垂直的判定定理可得面,即可證得平面;(2)取的中點(diǎn),連接,以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,由題得,解得.進(jìn)而求得平面和平面的法向量,利用向量的夾角公式,即可求解二面角的余弦值.詳解:(1)證明:∵四邊形ABCD是矩形,∴CD⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,CD平面ABCD,∴CD⊥平面PBC,∴CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PD平面PCD,∴PB⊥平面PCD.∵PB平面PAB,∴平面PAB⊥平面PCD.(2)設(shè)BC中點(diǎn)為,連接,,又面面,且面面,所以面.以為坐標(biāo)原點(diǎn),的方向?yàn)檩S正方向,為單位長(zhǎng),建立如圖所示的空間直角坐標(biāo)系.由(1)知PB⊥平面PCD,故PB⊥,設(shè),可得所以由題得,解得.所以設(shè)是平面的法向量,則,即,可取.設(shè)是平面的法向量,則,即,可取.則,所以二面角的余弦值為.點(diǎn)睛:本題考查了立體幾何中的面面垂直的判定和二面角的求解問(wèn)題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過(guò)嚴(yán)密推理,明確角的構(gòu)成.同時(shí)對(duì)于立體幾何中角的計(jì)算問(wèn)題,往往可以利用空間向量法,通過(guò)求解平面的法向量,利用向量的夾角公式求解.18、(1)1600,(平方米);(2)池底設(shè)計(jì)為邊長(zhǎng)40米的正方形時(shí)總造價(jià)最低,最低造價(jià)為268800元.【解析】(1)根據(jù)題意,由于修建一個(gè)長(zhǎng)方體無(wú)蓋蓄水池,其容積為4800立方米,深度為3米可得底面積為1600,池壁面積s=.(2)同時(shí)池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元設(shè)池底長(zhǎng)方形長(zhǎng)為x米,則可知總造價(jià)s=,x=40時(shí),則.故可知當(dāng)x=40時(shí),則有可使得總造價(jià)最低,最低造價(jià)是268800元.考點(diǎn):不等式求解最值點(diǎn)評(píng):主要是考查了不等式求解最值的運(yùn)用,屬于基礎(chǔ)題.19、(1)事件“認(rèn)為作業(yè)不多”和事件“喜歡手機(jī)網(wǎng)游且認(rèn)為作業(yè)多”的概率分別為、;(2).【解析】(1)利用古典概型的概率公式可求得所求事件的概率;(2)確定所選的名學(xué)生中,“不喜歡手機(jī)網(wǎng)游”和“喜歡手機(jī)網(wǎng)游”的學(xué)生人數(shù),加以標(biāo)記,列舉出所有的基本事件,確定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小問(wèn)1詳解】解:由題意可知,全班名學(xué)生中,“認(rèn)為作業(yè)不多”的學(xué)生人數(shù)為人,“喜歡手機(jī)網(wǎng)游且認(rèn)為作業(yè)多”的學(xué)生人數(shù)為人,因此,隨機(jī)地抽問(wèn)這個(gè)班的一名學(xué)生,事件“認(rèn)為作業(yè)不多”的概率為,事件“喜歡手機(jī)網(wǎng)游且認(rèn)為作業(yè)多”的概率為.【小問(wèn)2詳解】解:在“認(rèn)為作業(yè)多”的學(xué)生中已經(jīng)用分層抽樣的方法選取了名學(xué)生,這名學(xué)生中“不喜歡手機(jī)網(wǎng)游”的學(xué)生人數(shù)為,記為,名學(xué)生中“喜歡手機(jī)網(wǎng)游”的學(xué)生人數(shù)為,分別記為、、、,從這名學(xué)生中任取名學(xué)生,所有的基本事件有:、、、、、、、、、,共種,其中,事件“恰有名“不喜歡手機(jī)網(wǎng)游”的學(xué)生”包含的基本事件有:、、、,共種,故所求概率為.20、(1)證明見(jiàn)解析;(2);(3).【解析】(1)連接、,長(zhǎng)方體、線面垂直的性質(zhì)有、,再根據(jù)線面垂直的判定、性質(zhì)即可證結(jié)論.(2)連接,由已知條件及勾股定理可得、,即可求、,等體積法求到面的距離,又直線與面所成角即為與面所成角,即可求線面角的正弦值.(3)由題設(shè)易知二面角為,過(guò)作于,連接,可得二面角平面角為,令,由長(zhǎng)方體的性質(zhì)及勾股定理構(gòu)造方程求即可.【小問(wèn)1詳解】由題設(shè),連接、,又長(zhǎng)方體中,∴為正方形,即,又面,面,即,∵,面,∴面,而面,即.【小問(wèn)2詳解】連接,由E為棱的中點(diǎn),則,∴,又,故,∴,又,,故,則,由,若到面的距離為,又,,∴,可得,又,∴直線與面所成角即為與面所成角為,故.【小問(wèn)3詳解】二面角大小為,即二面角為,由長(zhǎng)方體性質(zhì)知:面,面,則,過(guò)作于,連接,又,∴面,則二面角平面角為,∴,令,則,故,而,,∴,∴,整理得,解得.∴時(shí),二面角的大小為.21、(1)增區(qū)間,,減區(qū)間,極大值,極小值(2)最大值,最小值【解析】(1)將點(diǎn)代入函數(shù)解析式即可求得a,對(duì)函數(shù)求導(dǎo),分析導(dǎo)函數(shù)的正負(fù),確定單調(diào)區(qū)間及極值;(2)分析函數(shù)在此區(qū)間上的單調(diào)性,由極值、端點(diǎn)值確定最值.【小問(wèn)1詳解】∵點(diǎn)在函數(shù)的圖象上,∴,解得,∴,∴,當(dāng)或時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;當(dāng)變化時(shí),的變化情況如下表:00極大值極小值∴當(dāng)時(shí),有極大值,且極大值為,當(dāng)時(shí),有極
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 幕墻施工現(xiàn)場(chǎng)安全管理方案
- 煤炭企業(yè)綠色轉(zhuǎn)型的探索與實(shí)踐
- 公共衛(wèi)生項(xiàng)目成本控制方案
- 大客戶經(jīng)理招聘筆試題及解答(某大型央企)
- 三年級(jí)語(yǔ)文教學(xué)工作總結(jié)
- 鄉(xiāng)村學(xué)校教師節(jié)發(fā)言稿
- 消防維保技術(shù)培訓(xùn)方案
- 未成年人安全教育提升方案
- 實(shí)驗(yàn)室危險(xiǎn)化學(xué)品使用制度
- 智能公園管理系統(tǒng)方案
- VFA的測(cè)定方法及標(biāo)準(zhǔn)曲線
- 危險(xiǎn)品安全數(shù)據(jù)清冊(cè)氯氰菊脂
- 施工現(xiàn)場(chǎng)挖斷電纜、光纜事故應(yīng)急搶修方案(純干貨版)
- 石灰石粉倉(cāng)安裝方案
- 標(biāo)準(zhǔn)化大綱-模版
- 松下電器(中國(guó))焊接學(xué)?!附蛹夹g(shù)
- 《肺動(dòng)脈高壓護(hù)理》PPT課件.ppt
- 河堤工程巖土工程勘察報(bào)告
- 完整版水穩(wěn)自評(píng)報(bào)告
- 《小兒推拿》PPT課件(完整版)
- 幼兒園區(qū)域材料投放明細(xì)(修改版)
評(píng)論
0/150
提交評(píng)論