版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
npjComplexity
|(2024)1:151
npj|complexityArticle
/10.1038/s44260-024-00015-x
Correlatingmeasuresofhierarchical
structuresinarti?cialneuralnetworkswiththeirperformance
Checkforupdates
ZhuoyingXu1
,6
,YingjunZhu1
,6,BinbinHong
2
,XinlinWu3
,4
,5
,JingwenZhang3
,4
,5
,MufengCai3
,4
,5
,DaZhou
1
區(qū)&YuLiu
3
,4
區(qū)
ThisstudyemploystherecentlydevelopedLadderpathapproach,withinthebroadercategoryof
AlgorithmicInformationTheory(AIT),whichcharacterizesthehierarchicalandnestedrelationshipsamongrepeatingsubstructures,toexplorethestructure-functionrelationshipinneuralnetworks,
multilayerperceptrons(MLP),inparticular.Themetricorder-rateη,derivedfromtheapproach,isameasureofstructuralorderliness:whenηisinthemiddlerange(around0.5),thestructureexhibitstherichesthierarchicalrelationships,correspondingtothehighestcomplexity.Wehypothesizethatthehigheststructuralcomplexitycorrelateswithoptimalfunctionality.Ourexperimentssupportthis
hypothesisinseveralways:networkswithηvaluesinthemiddlerangeshowsuperiorperformance,andthetrainingprocessestendtonaturallyadjustηtowardsthisrange;additionally,startingneuralnetworkswithηvaluesinthismiddlerangeappearstoboostperformance.Intriguingly,these?ndings
alignwithobservationsinotherdistinctsystems,includingchemicalmoleculesandproteinsequences,hintingatahiddenregularityencapsulatedbythistheoreticalframework.
Itiswidelyrecognizedthattheperformanceofneuralnetworksdependsontheirarchitecture
1
.Ononehand,thedesignofthesestructuresisinspiredbybiologicalneuralnetworks.Forinstance,convolutionalnetworksdrawfromtheconceptofvisualreceptive?elds
2
,3
.Ontheotherhand,theintroductionofnewnetworkarchitecturesoftenleadstosigni?cantperformanceleaps,suchastheTransformer,whichincorporatesaspectsofattentionmechanisms
4
.Whileitisknownthatthearchitectureofarti?cialneuralnetworksisakeydeterminantoftheirfunctionalityandperformance,inpractice,thedevelopmentofneuralnetworksismovingtowardsincreas-inglylargerscales,morecomplexstructures,andgreaternumbersoflayers.Forexample,thescaleofnetworks,intermsofthenumberofparameters,hasgrownfromthethousandsinLeNettothemillionsinAlexNet,andthentothebillionsinGPT;whilethearchitecturehasevolvedfromLeNettoAlexNet,VGG,GoogLeNet,variousAutoencoders,andmorerecentlytoTransformer
5
-9
.
Whilelarge-scalenetworksdemonstrateformidablecapabilitiesinpracticalapplications,theincreasedcomplexityofneuralnetworksimpliesaneedformoretrainingdata,longertrainingtimes,higherexpenses,andagrowingconcernforenergyconsumption
10
.Ifitwerepossibletoestimatetheappropriateneuralnetworkstructureandits
complexityforspeci?ctasksinadvance,substantialcomputationalresourcescouldbesaved.Additionally,insituationswherecompu-tationalresourcesarelimited,suchasinsmalldevicesorspaceequipment,itmightbenecessarytousethesmallestpossibleneuralnetworks
11
.Therefore,anunderstandingofthegenerallawsgov-erningtherelationshipbetweenthestructureandperformanceofneuralnetworksalsoholdssigni?cantpracticalvalue.
Researchersareactivelyinvestigatingtherelationshipbetweenneuralnetworkstructuresandtheirperformancefromvariousperspectives.Byrepresentingneuralnetworksasgraphs,onecanemployexistinggraphmetricsorde?nenewonestoelucidatethelinkbetweennetworkperfor-manceandthesemetricsacrossdifferentapplications
12
,13
.Someresearchdirectlyfocusesontheparticularstructureofnetworks
14
-16
,whileotherstudiesintroducenovelneuralnetworkstructurestoexaminetheirimpactonnetworkperformanceenhancement
17
.Thesestudieshaveraisednumerousfundamentalquestionsthatareurgentlyinneedofbeinganswered.Questionssuchaswhetherthereisasystematicrelationshipbetweenneuralnetworkstructuresandtheirperformance,orwhetherhigh-performingneuralnetworkspossessdistinctstructuralcharacteristics,arecentraltothisresearcharea.
1SchoolofMathematicalSciences,XiamenUniversity,Xiamen,China.2DepartmentofPhysics,FacultyofArtsandSciences,BeijingNormalUniversity,
Zhuhai,China.3DepartmentofSystemsScience,FacultyofArtsandSciences,BeijingNormalUniversity,Zhuhai,China.4InternationalAcademicCenterof
ComplexSystems,BeijingNormalUniversity,Zhuhai,China.5SchoolofSystemsScience,BeijingNormalUniversity,Beijing,China.6Theseauthorscontributedequally:ZhuoyingXu,YingjunZhu.e-mail:
zhouda@
;
yu.ernest.liu@
/10.1038/s44260-024-00015-x
Article
Hierarchyisanimportantfeatureamongvariousstructuralchar-acteristics.Intheresearchintobotharti?cialandbiologicalneuralnetworks,theimportanceandthepotentialuniversalityofhierarchicalstructureshavebeendiscovered(seethetwoparagraphsattheendofthissection).However,quantitativelycharacterizingthehierarchicalstructureofneuralnetworksisnotatrivialtask.TheLadderpathapproach,arecentlydevelopedmathe-maticaltoolwithinthebroadercategoryofAlgorithmicInformationTheory(AIT),offersarigorousanalyticalapproachforexaminingthestructuralinformationofatargetsystem
18
,19
.
Thisapproachpinpointsrepeatingsubstructures(or“modules”)withinthetargetsystem,whichthemselvesmayconsistofevensmallerrepeatingunits,progressivelybreakingdowntothemostbasicbuildingblocks.Theserepeatingsubstructurescanthenbereorganizedintoahier-archical,modular-nested,tree-likestructure.Oneextremescenarioisasystemwitha?attenedhierarchy,essentiallydevoidofrepeatingstructures,andcanbelikenedtocompletelydisorderedstructuresorentirelyrandomgeneticsequences.Theotherextremeinvolvessimplerepetitionofsmallsubstructures,likeadoublingsequence(2becomes4,4becomes8,8becomes16,andsoforth),whichiscomparabletocrystals.Systemsdeviatingfromtheseextremesandpositionedinthemiddlearethosewitharichhierarchicalstructure.Wehypothesizethatthedegreeofrichnessinthishierarchicalstructureispositivelycorrelatedwiththeperformanceofneuralnetworks.
TheLadderpathapproachhasrecentlybeensuccessfullyappliedinlivingandchemicalsystems,suchasanalyzingtheevolutionofproteinsequences
19
;asimilarmethodhasalsobeenusedtoinvestigatetheoriginsoflifethroughtheanalysisofmolecularstructure
20
.Theapplicabilityofthisapproachintheseareasislinkedtothetightstructure-functionrelationshipprevalentinevolutionarysystems(e.g.,thestructureofmoleculesdictatestheirphysicochemicalproperties,andthestructureofdrugmoleculesdeterminestheirbindingwithreceptorproteins).Similarly,thisstructure-functionrelationshipislikelytoexistinanotherkeyevolutionarysystem:intelligence.ThispaperemploystheLadderpathapproachtoanalyzethestructure-functionrelationshipinarti?cialneuralnetworks.Weacknowl-edgethatourworkiscurrentlylimitedtomultilayerperceptrons(MLP)andnetworksofconstrainedsizesduetothetechnicalchallengesofladderpathcalculations,aswehaveshownthatthesecalculationsareanNP-hardproblem
18
.However,ourprimarymotivationistodemonstratetheeffec-tivenessandfeasibilityofthisAITapproachinstudyingthehierarchicalandnestedstructuresofarti?cialneuralnetworks.Moreimportantly,coupledwiththerecentworkonproteinsequencesasdemonstratedin
19
,thistypeof
structure-functionrelationshipappearstomanifestinseveralseemingly
unrelatedsystems,suggestingacertainuniversalitythatmeritsattention.
Beforemovingforward,letusreviewthepreviousliteratureonhier-archicalstructures.The?rstpartisabouthierarchicalstructuresinarti?cialneuralnetworks.Forcertainspeci?cnetworks,suchasreservoircomputing,whichisanincreasinglyprominentneuralnetworkframeworkforstudyingdynamicalsystems
21
,researchhasshownthattheircomputationalcapacityismaximizedwhentheyareinacriticalstate
22
(althoughsomescholarsbelievethatthismaximizationofcomputationalcapacityisconditionalandonlytrueunderspeci?ccircumstances
23
).In2021,Wangetal.discoveredthatinwell-trainedreservoirnetworks,thenodessynchronizeinclusters,andthesizedistributionofthesynchronizationclustersfollowsapowerlaw
15
.Itisimportanttonotethatapower-lawdistributionisoftenakeycharacteristicofacriticalstate,andthisdistributionistypicallyamanifes-tationofarichlyhierarchicalstructure
24
.In2020,Leskovecetal.proposedamethodtorepresentneuralnetworksasgraphs,termedrelationalgraphs,whichcharacterizetheinter-layerconnectionsofneuralnetworks
13
.Theydiscoveredthatincaseswhereaneuralnetworkperformswell,theaveragepathlengthandclusteringcoef?cientofitscorrespondingrelationalgraphtendtoalwaysfallwithinacertainrange(itisnotablethatthesetwoindicesintuitivelyrepresentcharacteristicsthataretypicallyoppositeinnature).Furthermore,thetrainingprocesstendstoshiftthesetwostructuralmetricstowardsthisrange.In2018,Yingetal.introducedadifferentiablegraphpoolingmethod,designedtointegratecomplexhierarchicalrepresentations
ofgraphs,andfurtherconnectdeepergraphneuralnetworkmodelstotheserepresentations
16
.Thismethodhassigni?cantlyenhancedaccuracyingraphclassi?cationbenchmarktaskscomparedtootherpoolingmethods,underscoringthecriticalroleofutilizinghierarchicalinformationforneuralnetworkperformance.In2016,Bengioetal.proposedthreecomplexitymetricsforthearchitectureofrecurrentneuralnetworksfromagraphperspective:recurrentdepth,feedforwarddepth,andrecurrentskipcoef?-cient.Experimentshaverevealedthatincreasingrecurrentandfeedforwarddepthcanenhancenetworkperformance,andaugmentingtherecurrentskipcoef?cientcanimproveperformanceintaskswithlong-termdependencies
12
.
Then,thisparagraphcovershierarchicalstructuresinbiologicalneuralnetworks.Inrealbiologicalneuralnetworks,similarstudieshavealsoshownapositivecorrelationbetweenhierarchicalstructureandgoodperformance.Baumetal.analyzedsamplesfromyouthsaged8–22inthePhiladelphiaNeurodevelopmentalCohorttostudytheevolutionofstructuralbrainnetworksovertime
25
.Theyobservedthatasindividualsage,thenetworkstructureundergoesamodularseparationprocess,whereconnectionswithinmodulesstrengthenandinter-moduleconnectionsweaken.Fur-thermore,thisseparationappearstobebene?cialforthedevelopmentofbrainfunctionsinyouths.Vidaurreetal.,usingwhole-brainresting-statefMRIdata,employedmethodssuchashiddenMarkovchainsandhier-archicalclusteringtoanalyzetheorganizationaldynamicsofbrainnetworksovertime
26
.Theydiscoveredadistincthierarchicalstructurewithinbraindynamics,whichshowssigni?cantcorrelationswithindividualbehaviorandgeneticpredispositions.Theirresearchunderscoresacloseconnectionbetweenthehierarchicalstructureandfunctioninactualbrainnetworks.In2021,Zhouetal.studiedtherelationshipbetweennetworkstructureanditsdynamicpropertiesfromdifferentperspectives.Theydiscoveredthatmodularnetworktopologiescansigni?cantlyreducebothoperationalandconnectivitycosts,thusachievingajointoptimizationofef?ciency
27
.Alsoin2021,Luoreviewedcommoncircuitmotifsandarchitecturalplans,exploringhowthesecircuitarchitecturesassembletoachievevariousfunctions
28
.Thesecircuitmotifscanbeconsideredas“words”,whichcombineintocircuitarchitecturesthatmightoperateatthelevelof“sen-tences”.Thisworkemphasizestheimportanceofhierarchicalstructures:onlyaftergainingabetterunderstandingofthenestedmodularhierarchicalstructuresamongtheseneuronalconnectionscanwebegintounderstandthe“paragraphs”(e.g.,brainregions)andeventuallythe“article”,whichmayinspiremoreimportantadvancesinarti?cialintelligence.
Methods
RecaptheLadderpathapproach
TheLadderpathapproach,detailedin
18
,19
,offersaquantitativeapproachtoanalyzestructuralinformationinsystems,rangingfromsequences,mole-culestoimages.Ititerativelyidenti?esrepeatingsubstructures,calledlad-derons,whichareessentiallyreusedmodules.Thesesubstructuresmaybecomposedofsmallerrepeatingunits,cascadingdowntothesystem’smostbasicbuildingblocks.Theseladderonscollectivelyformahierarchical,nested,tree-likestructureknownasaladdergraph.
UsingthesequenceABCDBCDBCDCDACAC(denotedasX)asanexampletoillustrate,theladdergraphiscomputedasshowninFig.
1
,demonstratinghowtoconstructthetargetsequenceXfromthefourbasicbuildingblocksA,B,C,andDinthemostef?cientmanner.First,combineCandDtoconstructCD,andAandCtoconstructAC,whichtakes2steps;thencombiningBwithCDtoconstructBCDisanotherstep.Next,con-structthetargetsequenceXusingalreadygeneratedsubstructures(or“modules”)andbasicbuildingblocks.ThisinvolvescombiningA,BCD,BCD,BCD,CD,AC,andAC,thustaking6steps;intotal,thisis9stepssofar;the?nalstepinvolvesoutputtingX.Therefore,constructingXinthemostef?cientmannertakes10stepsintotal.
Xhas16letters,butonly10stepswereneededduetothereuseofsomerepeatingsubstructures:forexample,thepreviouslyconstructedCDisreusedinconstructingBCD;whileBCDappearsthreetimes,thesubsequentinstancesofBCDcandirectlyusetheinitiallyconstructedBCD,saving
npjComplexity
|(2024)1:152
/10.1038/s44260-024-00015-x
Article
Fig.1|Laddergraphsofdifferentsystems.aLaddergraphofashortsequence,forillustrativepurposes.Thegrayhexagonsrepresentthebasicbuildingblocks,andthegraysquaresrepresenttheladderons.Inb–d,basicbuildingblocksareomitted,andladderonsarerepresentedasgrayellipses.bLaddergraphofacompletelyrandomanddisorderedsequence,withη=0.04,BBDCDDCAACABACCDADA-
BABDDD...,whichshowsminimalhierarchicalrelationshipsamongrepeating
substructures.cLaddergraphofasequencecomposedentirelyofA's(themost
orderedsequence),withη=1.TheladderonsareAA,AAAA,AAAAAAAA,etc.dLaddergraphofthesequenceABABABDABABBAABAABCACABABDA...,
whichhasη=0.53.Thissequencedisplaystherichesthierarchicalstructure.Thesequencesshownin(b-d)areeachcomposedofthebasicbuildingblocksA,B,C,andD,andhavealengthof300,representingthreetypicalcategoriesofsequences.
manysteps.ThisprincipleofreuseisafundamentalconceptinAITandtheLadderpathapproach.
Notethatinourexample,somestepscanbeinterchanged,suchaswhethertoconstructCDorAC?rst,whichdoesnotmatter.However,theorderbetweenCDandBCDmustnotbereversed,becauseBCDisbasedonCD.Therefore,theladdergraphalsocorrespondstoapartiallyorderedmultiset,whichcanbedenotedas
{B;D;A(2);C(2)/AC;CD/BCD(2)}(1)
Stepswithinthesamelevel(i.e.,separatedby“/”)canbeinterchanged,butnotacrosslevels.Thisiswhythesequenceexhibitsahierarchicalstructure.
Now,wecanintroduceseveralimportantnotionswithintheLadder-pathapproach.Intheexampleabove,the“10steps”arede?nedastheladderpath-indexofX,whileanotherquantity,theorder-indexω,isde?nedasthelengthofXminusitsladderpath-index,whichisω(X)=16-10=6.Mathematically,wehaveshowninref.
18
thatωalwaysequalsthesumofthe“reducedlengths”lofeachladderon(wherethereducedlengthisde?nedasthelengthofeachladderonminusone).Inthiscase,ω(X)=lAC+lCD+2×lBCDwherelACisthelengthofACminus1,namely(2?1),lCD=2?1,andlBCD=3?1;Themultiplierof2forlBCDisbecauseitsmultiplicityinthepartiallyorderedmultiset,asshowninEq.(
1
),is2,indicatingthatitwasreusedtwice.Thus,theorder-indexωcountsthesizesofallrepeatingsubstructuresinasystem,therebyessentiallychar-acterizinghoworderedasystemisinanabsolutemeasure.Foramoredetailedtheoreticalexplanationandmathematicalderivation,pleaserefertoref.
18
.
Thisrecapmaybeconsideredlengthy,whichcouldseemover-whelming,andsomenotionsmightappearunnecessaryat?rstglance.Infact,thisisbecausetheLadderpathapproachwithinAITwasnotspeci?callydevelopedtocharacterizeneuralnetworksbutwasdevelopedfromamoregeneralperspective,whichmaymakeitseemverbose.However,ithasbeensuccessfullyappliedinseeminglyunrelated?eldssuchasproteinsequences
19
,andoursubsequent?ndingsalsodemonstratethatthisapproachperformswellinarti?cialneuralnetworks.Thisindicatesthattheapproachandtherelationshipsbetweenthehierarchicalstructureand
performanceitdescribesareuniversaltoacertainextent,makingitworthwhile.
Ladderpathcharacterizeshierarchicalstructures
Aftertherecap,weproceedbytakingmorecomplexsequencesasexamples.Wewilldemonstratetheladdergraphsofthreetypicalcategoriesofsequences:minimalrepetition,akintocompletelyrandom,disorderedsystems(Fig.
1
b);simplerepetition,similartoacrystallinestructure,wherethepatternprogressesfrom2to4,4to8,8to16,andsoon(Fig.
1
c);andtheonesthatliebetweenthesetwoextremes,showcasingtherichesthierarchicalstructure(Fig.
1
d).
Tobettercharacterizethehierarchicalstructure,wehave,inref.
19
,de?nedarelativemeasureontopoftheabsolutemeasureω,calledtheorder-rateη.Tobeginwith,letus?rstexaminethedistributionofωofvarioussequencesversustheirlengthsS,asshowninFig.
2
.ForagivenlengthS,wecanobservethatωhasbothamaximumandaminimumvalue:themax-imum,denotedasωmax(S),correspondstosequencesthatarecompletelyidentical;theminimum,denotedasω0(S),correspondstopurelyrandomsequences.Theminimumvaluearisesbecause,insequenceswitha?nitenumberofbases(herebeingA,B,C,andD),repeatingsubstructureswillinevitablyappearasthelengthincreases,meaningeventhepurelyrandomsequencewillnothaveanωofzero.Therefore,weneedtonormalizeit,leadingtothede?nitionoftherelativemeasureorder-rateη(x)forsequencex:
η(x):=ω(x)-ω0(S)(2)
ωmax(S)-ω0(S)
whereSisthelengthofthesequencex.Anηof0meanscompletedisorder(Fig.
1
b),1impliesfullorder(Fig.
1
c),andaround0.5indicatesarichlystructuredhierarchy(Fig.
1
d).
Infact,intheLadderpathapproach,ηisrelatedtothecomplexityofasystem.Asystemisnotconsideredcomplexifentirelyrandom(η≈0)orordered(η≈1);complexityemergesonlyintheintermediatestate(η≈0.5).ThisdistinguishesLadderpathfromsimilarconceptssuchasKolmogorov
npjComplexity
|(2024)1:153
/10.1038/s44260-024-00015-x
Article
npjComplexity
|(2024)1:154
complexity,additionchain,assemblytheory,andthe“adjacentpossible”
29
–31
.
Inthecontextofneuralnetworks,wecanapplytheLadderpathapproachtosystematicallyorganizethenetwork’srepeatingsub-structuresinanestedhierarchicalmanner.AsillustratedinFig.
3
a,b,thepartshighlightedbyred,yellow,andgreenlinesrepresentthesesubstructures(withthesamecolorindicatingidentical,reusedmodules).Fromthis,wecanestablishahierarchicalrelationship(andillustratetheladdergraph):theredsubstructureisencompassedwithinboththeyellowandgreenones.Nevertheless,directlycalcu-latingtheladdergraphisquitechallenging(andthisproblemisinherentlyNP-hard
18
).Hence,we?rsttransformthenetworkintoa
Fig.2|Distributionoftheorder-indexωforsequencesofvaryinglengths,illus-tratingthecalculationoftheorder-rateη.
setofsequencesandthencomputeit(themethodforthistrans-formationwillbedetailedinsection“Sequencerepresentationofaneuralnetwork”,andtherearealreadyalgorithmsdevelopedforcomputingladdergraphsofsequencesatthescaleof10,000inlength
19
).Finally,wehypothesizethattheneuralnetwork’sabilitytoextractandintegrateinformationisatitspeak(achievingitsbestperformance)whenitshierarchicalstructureistherichest(i.e.,whenmodulereuseandtinkeringaremostpronounced),correspondingtotheorder-rateηaround0.5.
Experimentsetup
Toinvestigatetheconnectionbetweenthestructureofaneuralnetworkanditsfunctionality,wechosearathersimpletask:recognizingwhetherathree-digitnumberisoddoreven.ThiswasaddressedusingaMLP.Theinputconsistsofthreeneurons,representingthehundreds,tens,andonesplace,respectively,whiletheoutputhastwoneuronsindicatingoddoreven.Thehiddenlayersvary,either1,2,3,or4layers,eachcomprisingadifferentnumberofneurons.Tosimplifytheanalysis,welimitedeachMLPtoamaximumof200edges.Withthisconstraint,anMLPwithonehiddenlayercouldhaveonly40distinctvariations:Giventheinputlayerhas3neuronsandtheoutputlayerhas2neurons,ifthehiddenlayerhas40neurons(wecandenotethisMLP[3,40,2]),thereareatotalof3×40+40×2=200edges;theMLP[3,41,2]wouldhave205edges.ForanMLPwithtwo,three,andfourhiddenlayers,weconstructed200distinctarchitecturesforeachcategory(suchas[3,7,17,2],[3,8,3,5,2],and[3,3,5,14,2]whichhave2,3,and3hiddenlayersrespectively),contributingtothetotalof640differentarchitectures.
Thenetworkconnectionweightswererandomlyinitialized,andall640architecturesunderwentanidenticaltrainingperiod,eachfor2000epochs.Duringthetraining,wemonitoredthechangesinperformance(measuredbyaccuracy)andthenetwork’sorder-rateη(calculatedbasedontheLad-derpathapproach),toexploretherelationshipbetweentheseaspects.Sec-tion“Results”presentstheevolutionaryandstatisticalrelationshipsbetweenstructureandfunction.
Fig.3|ThediagramillustratinghowtoemploytheLadderpathapproachtoanalyzeaneuralnetwork,andreorganizetherepeatingsubstructuresintoaladdergraph.aAschematicdiagramofanMLP.bAschematicdiagramoftheladdergraphofthisMLP.cRepresentinganMLPasasetofsequences.
/10.1038/s44260-024-00015-x
Article
Sequencerepresentationofaneuralnetwork
ToutilizethealgorithmbasedontheLadderpathapproach
19
forstudyingthestructure-functionrelationshipinneuralnetworks,weneedtouseasequenceorasetofsequencestorepresentaneuralnetwork’sstructure.Byenvisioninganeuralnetworkasasignal(i.e.,theinput)propagationpro-blemoraninformation?owproblemwithinanetwork,thecollectionofallpathsthatthesesignalstraversecanrepresentthenetworkstructure.Sincetheconnectionweightsbetweenneuronsarerealnumbers,we?rstneedtocoarse-grainthem,usingdifferentsymbolstorepresentweightswithinthesamerange.
Thehigherthedegreeofcoarse-graining,themoreconducivetheextractedinformationisforsequenceanalysis;thelowerthedegreeofcoarse-graining,themoreinformationretained.However,thisalsoresultsinmoreunnecessarydetails,whichcanmakesubsequentanalysismoredif-?cult.Therefore,weconductedexperimentswithvariousdegreesofcoarse-grainingto?ndabalancethatisaslargeaspossiblewithoutsigni?cantlydiminishingfunctionalperformance.Fortheparticularsystemsweselected,ournumericalexperimentsshowedthatwhenthecoarse-grainingintervalis
Order-rateη
Fig.4|Thedistributionoftheorder-rateηvs.theaccuracyintheodd-even
recognitiontaskperformedbytheneuralnetworks.Thestatisticsincludealloftheaforementioned640differentarchitectures.
settoamaximumof0.1,ithasaminimalimpactontheneuralnetwork’sperformance(seeSupplementaryNote1fordetailedinformation).
Subsequently,weobtaintheappropriatelycoarse-grainedgraph,andwecanconvertthegraphintoasetofsequences.Neuronsarethenodesofthisgraph,andnodeswithinthesamelayerareassignedthesamesymbolduetotheirsharedactivationfunction.Connectionsbetweenneuronsaretheedgesofthegraph,andedgeswithuniqueweights(discretizedaspre-viouslymentioned)areconsideredtocarrydistinctinformation,andarethusrepresentedusingdifferentsymbols.Forexample,thepathhighlightedingrayinFig.
3
canbedenotedasAzBxC.Throughthismethod,wecandetaileverypathaninputsignaltraverses,andaggregatethesepathsintoasetofsequencestodepictthegraph.WecanthenemploytheLadderpathapproachtoexaminethesequences,andtherebyinvestigatethechar-acteristicsoftheneuralnetwork’sstructure.
Results
Bestperformancewhenthehierarchicalstru
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 梅花微課程設(shè)計
- 組合滑道課程設(shè)計
- 幼兒園民間童謠課程設(shè)計
- 版畫色彩搭配課程設(shè)計
- 電子秒表課程設(shè)計摘要
- 洗衣機機械課程設(shè)計
- 幼兒園紅色戲劇課程設(shè)計
- 2024年海南省建筑安全員-C證(專職安全員)考試題庫
- 2024云南省安全員-B證考試題庫附答案
- 電基實驗課程設(shè)計
- 2024年秋新人教PEP版3年級上冊英語教學(xué)課件 Unit 4 第4課時 Part B Let's talk
- 私募股權(quán)基金公司的賬務(wù)處理-記賬實操
- 期末模擬考試卷01-2024-2025學(xué)年上學(xué)期高二思想政治課《哲學(xué)與人生》原題卷+答案卷
- 2024新版(外研版三起孫有中)三年級英語上冊單詞帶音標(biāo)
- 沙金礦承包開采合作協(xié)議書范文
- 2025屆安徽省合肥市一六八中高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析
- 英語四級模擬試題(附答案)
- 自來水廠考試題庫單選題100道及答案解析
- 2024智慧城市數(shù)據(jù)分類標(biāo)準(zhǔn)規(guī)范
- 教育學(xué)院院長述職報告范文
- 文玩交易合同(2篇)
評論
0/150
提交評論