




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆四川省遂寧第二中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面上有一系列點,對每個正整數(shù),點位于函數(shù)的圖象上,以點為圓心的與軸都相切,且與彼此外切.若,且,,的前項之和為,則()A. B.C. D.2.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為,如.如圖所示的程序框圖的算法源于我國古代聞名中外的“中國剩余定理”.執(zhí)行該程序框圖,則輸出的i等于()A.7 B.10C.13 D.163.某公司要建造一個長方體狀的無蓋箱子,其容積為48m3,高為3m,如果箱底每1m2的造價為15元,箱壁每1m2造價為12元,則箱子的最低總造價為()A.72元 B.300元C.512元 D.816元4.雙曲線x21的漸近線方程是()A.y=±x B.y=±xC.y=± D.y=±2x5.設(shè)函數(shù)在上單調(diào)遞減,則實數(shù)的取值范圍是()A. B.C. D.6.復(fù)數(shù),且z在復(fù)平面內(nèi)對應(yīng)的點在第二象限,則實數(shù)m的值可以為()A.2 B.C. D.07.設(shè)命題,則為()A. B.C. D.8.方程表示的曲線經(jīng)過的一點是()A. B.C. D.9.已知拋物線的焦點為F,點P為該拋物線上的動點,若,則當(dāng)最大時,()A. B.1C. D.210.若直線與直線垂直,則()A6 B.4C. D.11.已知函數(shù),若,則等于()A. B.1C.ln2 D.e12.直線在y軸上的截距是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在正方體中,點是底面內(nèi)(含邊界)的一點,且平面,則異面直線與所成角的取值范圍為____________14.已知,滿足約束條件則的最小值為__________15.已知圓,則圓心坐標(biāo)為______.16.雙曲線的漸近線方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:()的焦點為F,原點O關(guān)于點F的對稱點為Q,點關(guān)于點Q的對稱點,也在拋物線C上(1)求p的值;(2)設(shè)直線l交拋物線C于不同兩點A、B,直線、與拋物線C的另一個交點分別為M、N,,,且,求直線l的橫截距的最大值.18.(12分)某校高二年級全體學(xué)生參加了一次數(shù)學(xué)測試,學(xué)校利用簡單隨機抽樣方法從甲班、乙班各抽取五名同學(xué)的數(shù)學(xué)測試成績(單位:分)得到如下莖葉圖,若甲、乙兩班數(shù)據(jù)的中位數(shù)相等且平均數(shù)也相等.(1)求出莖葉圖中m和n的值:(2)若從86分以上(不含86分)的同學(xué)中隨機抽出兩名,求此兩人都來自甲班的概率.19.(12分)在數(shù)列中,,點在直線上.(1)求的通項公式;(2)記的前項和為,且,求數(shù)列的前項和.20.(12分)求下列不等式的解集:(1);(2)21.(12分)為了了解高二段1000名學(xué)生一周課外活動情況,隨機抽取了若干學(xué)生的一周課外活動時間,時間全部介于10分鐘與110分鐘之間,將課外活動時間按如下方式分成五組:第一組,第二組,…,第五組.按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右前3個組的頻率之比為3∶8∶19,且第二組的頻數(shù)為8(1)求第一組數(shù)據(jù)的頻率并計算調(diào)查中隨機抽取了多少名學(xué)生的一周課外活動時間;(2)求這組數(shù)據(jù)的平均數(shù)22.(10分)某高校在今年的自主招生考試成績中隨機抽取100名考生的筆試成績,分為5組制出頻率分布表如圖所示.組號分組頻數(shù)頻率150052350.35330b4cd5100.1(1)求b,c,d的值;(2)該校決定在成績較好的3、4、5組用分層抽樣抽取6名學(xué)生進行面試,則每組應(yīng)各抽多少名學(xué)生?(3)在(2)的前提下,從抽到6名學(xué)生中再隨機抽取2名被甲考官面試,求這2名學(xué)生來自同一組的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)兩圓的幾何關(guān)系及其圓心在函數(shù)的圖象上,即可得到遞推關(guān)系式,通過構(gòu)造等差數(shù)列求得的通項公式,得出,最后利用裂項相消,求出數(shù)列前項和,即可求出.詳解】由與彼此外切,則,,,又∵,∴,故為等差數(shù)列且,,則,,則,即,故答案選:.2、C【解析】根據(jù)“中國剩余定理”,進而依次執(zhí)行循環(huán)體,最后求得答案.【詳解】由題意,第一步:,余數(shù)不為1;第二步:,余數(shù)不為1;第三步:,余數(shù)為1,執(zhí)行第二個判斷框,余數(shù)不為2;第四步:,執(zhí)行第一個判斷框,余數(shù)為1,執(zhí)行第二個判斷框,余數(shù)為2.輸出的i值為13.故選:C.3、D【解析】設(shè)這個箱子的箱底的長為xm,則寬為m,設(shè)箱子總造價為f(x)元,則f(x)=72(x)+240,由此利用均值不等式能求出箱子的最低總造價【詳解】設(shè)這個箱子的箱底的長為xm,則寬為m,設(shè)箱子總造價為f(x)元,∴f(x)=15×16+12×3(2x)=72(x)+240≥144240=816,當(dāng)且僅當(dāng)x,即x=4時,f(x)取最小值816元故選:D4、D【解析】根據(jù)雙曲線漸近線定義即可求解.【詳解】雙曲線的方程為,雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于容易題.5、B【解析】分析可知,對任意的恒成立,由參變量分離法可得出,求出在時的取值范圍,即可得出實數(shù)的取值范圍.【詳解】因為,則,由題意可知對任意的恒成立,則對任意的恒成立,當(dāng)時,,.故選:B.6、B【解析】根據(jù)復(fù)數(shù)的幾何意義求出的范圍,即可得出答案.【詳解】解:當(dāng)z在復(fù)平面內(nèi)對應(yīng)的點在第二象限時,則有,可得,結(jié)合選項可知,B正確故選:B7、D【解析】利用含有一個量詞的命題的否定的定義判斷.【詳解】因為命題是全稱量詞命題,所以其否定是存在量詞命題,即,故選:D8、C【解析】當(dāng)時可得,可得答案.【詳解】當(dāng)時可得所以方程表示的曲線經(jīng)過的一點是,且其它點都不滿足方程,故選:C9、B【解析】根據(jù)拋物線的定義,結(jié)合換元法、配方法進行求解即可.【詳解】因為點P為該拋物線上的動點,所以點P的坐標(biāo)設(shè)為,拋物線的焦點為F,所以,拋物線的準(zhǔn)線方程為:,因此,令,,當(dāng)時,即當(dāng)時,有最大值,最大值為1,此時.故選:B10、A【解析】由兩條直線垂直的條件可得答案.【詳解】由題意可知,即故選:A.11、D【解析】求導(dǎo),由得出.【詳解】,故選:D12、D【解析】在y軸上的截距只需令x=0求出y的值即可得出.【詳解】令x=0,則y=-2,即直線在y周上的截距為-2,故選D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】過作平面平面,得到在與平面的交線上,連接,證得平面平面,得到點在上,設(shè)正方體的棱長為,且,得到,,設(shè)與所成角為,利用向量的夾角公式,求得,結(jié)合二次函數(shù)的性質(zhì),即可求解.【詳解】過作平面平面,因為點是底面內(nèi)(含邊界)的一點,且平面,則平面,即在與平面的交線上,連接,因為且,所以四邊形是平行四邊形,所以,平面,同理可證平面,所以平面平面,則平面即為,點在線段上,設(shè)正方體的棱長為,且,則,,可得,設(shè)與所成角為,則,當(dāng)時,取得最小值,最小值為,當(dāng)或時,取得最大值,最大值為故答案為14、2【解析】由題意,根據(jù)約束條件作出可行域圖,如圖所示,將目標(biāo)函數(shù)轉(zhuǎn)化為,作出其平行直線,并將其在可行域內(nèi)平行上下移動,當(dāng)移到頂點時,在軸上的截距最小,即.15、【解析】將圓的一般方程配方程標(biāo)準(zhǔn)方程即可.【詳解】圓,即,它的圓心坐標(biāo)是.故答案為:.16、【解析】將雙曲線化為標(biāo)準(zhǔn)方程后求解【詳解】,化簡得,其漸近線方程故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)最大橫截距為.【解析】(1)首先寫出的坐標(biāo),根據(jù)對稱關(guān)系求出的坐標(biāo),帶入即可求出.(2)設(shè)直線l的方程為,帶入拋物線方程利用韋達定理,計算出直線l的橫截距的表達式從而求出其最大值.【詳解】(1)由題知,,故,代入C的方程得,∴;(2)設(shè)直線l的方程為,與拋物線C:聯(lián)立得,由題知,可設(shè)方程兩根為,,則,,(*)由得,∴,,又點M在拋物線C上,∴,化簡得,由題知M,A為不同兩點,故,,即,同理可得,∴,將(*)式代入得,即,將其代入解得,∴在時取得最大值,即直線l的最大橫截距為.18、(1),(2)【解析】(1)根據(jù)莖葉圖得甲班中位數(shù)為,由此能求出,根據(jù)由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,從86分以上(不含86分)的同學(xué)中隨機抽出兩名,用列舉法寫出基本事件總數(shù),再利用古典概型的概率計算公式即可求解.【小問1詳解】根據(jù)莖葉圖可知1班中位數(shù)為86,則,又∵,且故【小問2詳解】由(1)可知,甲班86分以上有2人,乙班86以上有2人設(shè)甲班86分以上2人為,,乙班86分以上2人為,,從中任取兩名同學(xué)共有,,,,,共有6組基本事件,且每組出現(xiàn)都是等可能的記:“從86分以上(不含86分)的同學(xué)中隨機抽出兩名,兩人都來自甲班”為事件M,事件M包括:共1個基本事件,由古典概型的計算概率的公式知∴所以兩人都來自甲班的概率為19、(1)(2)【解析】(1)由定義證明數(shù)列是等差數(shù)列,再由得出通項公式;(2)先由求和公式得出,再由裂項相消求和法求和即可.【小問1詳解】由題意可知,,所以數(shù)列是公差的等差數(shù)列又,所以,故小問2詳解】,則故20、(1)(2)【解析】(1)利用一元二次不等式的解法求解;(2)利用分式不等式的解法求解.【小問1詳解】解:因為,所以,解得,所以不等式的解集是;【小問2詳解】因為,所以,所以,即,解得,所以不等式的解集是.21、(1)0.06,50名(2)64(分鐘)【解析】(1)利用頻率和為1可求解頻率,再利用頻率,頻數(shù),總數(shù)之間的關(guān)系可求解學(xué)生人數(shù);(2)平均數(shù):頻率分布直方圖中每個小長方形的中點乘以對應(yīng)的長方形面積之和;【小問1詳解】設(shè)圖中從左到右前3個組的頻率分別為3x,8x,19x依題意,得所以.所以第一組數(shù)據(jù)的頻率為,設(shè)調(diào)查中隨機抽取了n名學(xué)生的課外活動時間,則,得,所以調(diào)查中隨機抽取了50名學(xué)生的課外活動時間小問2詳解】由題意,這組數(shù)據(jù)的平均數(shù)(分鐘)22、(1),,(2)第三組應(yīng)抽人,第四組應(yīng)抽人,第五組應(yīng)抽人(3)【解析】(1)根據(jù)頻率分布表的數(shù)據(jù)求出b,c,d的值;(2)三個組共有60人,從而利用分層抽樣抽樣方法抽取6名學(xué)生第
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 天津生物工程職業(yè)技術(shù)學(xué)院《交流與研究二》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年江西婺源茶業(yè)職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試歷年(2019-2024年)真題考點試卷含答案解析
- 中小學(xué)教師資格考試中的課堂管理與試題及答案
- 手術(shù)患者的護理與特點
- 第2課時 平面草圖巧手繪(教案)2023-2024學(xué)年五年級下冊信息技術(shù)閩教版
- 醫(yī)療護理手術(shù)室
- 小班大蒜課程故事
- 2025年稅務(wù)師考試知識儲備方法試題及答案
- 2025年初級會計師考試考前模擬試題分析試題及答案
- 2025年護理組長述職報告
- 廚師操作安全培訓(xùn)
- 小數(shù)與單位換算(說課稿)-2023-2024學(xué)年四年級下冊數(shù)學(xué)人教版
- 《張愛玲傾城之戀》課件
- 實驗診斷學(xué)練習(xí)題庫(附參考答案)
- 無錫網(wǎng)格員考試題庫
- 第9課 改變世界的工業(yè)革命
- 《供應(yīng)商選擇與評估》課件
- 新版申請銀行減免利息的申請書
- QC課題提高金剛砂地面施工一次合格率
- 保潔服務(wù)質(zhì)量保障及措施
- 《電子銀行安全評估過程實施指南》征求意見稿
評論
0/150
提交評論