滬科版數(shù)學(xué)八年級上冊綜合訓(xùn)練50題-含答案_第1頁
滬科版數(shù)學(xué)八年級上冊綜合訓(xùn)練50題-含答案_第2頁
滬科版數(shù)學(xué)八年級上冊綜合訓(xùn)練50題-含答案_第3頁
滬科版數(shù)學(xué)八年級上冊綜合訓(xùn)練50題-含答案_第4頁
滬科版數(shù)學(xué)八年級上冊綜合訓(xùn)練50題-含答案_第5頁
已閱讀5頁,還剩44頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

滬科版數(shù)學(xué)八年級上冊綜合訓(xùn)練50題含答案

(填空、解答題)

一、填空題

1.如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,若直線y=2x-6與X軸、y軸分別

2.如圖,直線>=-2尤-2與x軸交于點A,與>軸交于點B,把直線AB沿x軸的正

半軸向右平移2個單位長度后得到直線CQ,則直線C。的函數(shù)解析式是.

3.在“ABC中,NA=NB=NC,則ABC是_______三角形.

4.如圖,在RtZiABC中,NC=90。,NCAB的平分線BC交BC于D,DE是AB的

垂直平分線,垂足為E,若BC=3,則DE的長為—.

5.下列給出的是關(guān)于某個一次函數(shù)的自變量x及其對應(yīng)的函數(shù)值y的若干信息,請你

根據(jù)表格中的相關(guān)數(shù)據(jù)計算:m+n=.

X-i13

ym3n

6.閱讀下面的材料:

在數(shù)學(xué)課上,老師提出如下問題:,

尺起作圖:作一條線段的垂直平分線.,

已知:線段月B3

------------------------------------1川

求作:線段月8的垂直平分線.,

小蕓的作法如下:

—??

xC

-----------B

1D

①分別以點*和點8為回心.大干148長為半耨作孤,兩山楣交干C。同自、.“

②#直蝮CD.?

直線8就建所未住的安宣平分假.“

老嬸說:?小餐的作法正???~

請回答:小蕓的作圖依據(jù)是.

7.若函數(shù)尸質(zhì)+b的圖象如圖所示,則不等式區(qū)+萬>0的解集是.

8.如圖,在一ABC中,按以下步驟作圖:

①以點B為圓心,任意長為半徑作弧,分別交AB、BC于點。、E.

②分別以點。、E為圓心,大于g的同樣長為半徑作弧,兩弧交于點E

③作射線BF交AC于點G.

9.函數(shù)y=〃+b的圖象如圖,不等式公+642的解集為

10.一次函數(shù)y=x-5的圖象與y軸的交點坐標(biāo)為.

11.已知點尸的坐標(biāo)為(。+1,5-3a),且它到兩個坐標(biāo)軸的距離相等,則點P的坐標(biāo)

為.

12.如圖,長方形紙片4BCD中AO〃BC,AB//CD,ZA=90°,將紙片沿EF折疊,

使頂點C、。分別落在點。、處,CE交A尸于點G.若/CEF=68。,則么/GFC'=

13.已知點例(-1,3),點N為x軸上一動點,則MN的最小值為.

14.已知點P(孫2)在第一象限,那么點B(3,-/?)在第象限.

15.如圖,已知分別是RtZXABC的三條邊長,ZC=90°,我們把關(guān)于x的形如

y=2X+g的一次函數(shù)稱為“勾股一次函數(shù),,:若點孚)在“勾股一次函數(shù)”的圖象

上,且RtaABC的面積是10,則c的值是.

A

16.如圖,在△ABC中,AB=\7,AC=12,AO為中線,則△A3。與△ACD的周長之

17.某下崗職工購進一批貨物到集貿(mào)市場零售,已知賣出的貨物質(zhì)量x(千克)與售價

y(元)的關(guān)系如表所示:

質(zhì)量x(千克)12345

售價y(元)2+0.14+0.26+0.38+0.410+0.5

寫出y關(guān)于x的函數(shù)關(guān)系式是.

18.“歡樂跑中國?重慶站”比賽前夕,小剛和小強相約晨練跑步.小剛比小強早1分鐘

跑步出門,3分鐘后他們相遇.兩人寒暄2分鐘后,決定進行跑步比賽.比賽時小剛

的速度始終是180米/分,小強的速度是220米/分.比賽開始10分鐘后,因霧霾嚴(yán)

重,小強突感身體不適,于是他按原路以出門時的速度返回,直到他們再次相遇.如

圖所示是小剛、小強之間的距離y(千米)與小剛跑步所用時間x(分鐘)之間的函數(shù)

圖象.問小剛從家出發(fā)到他們再次相遇時,一共用了一分鐘.

19.在ABC中,AB=AC,點。是一ABC外一點,連接A。、BD、CD,且8。交

AC于點。,在8。上取一點E,使得=ZEAD=ZBAC,若NAC8=70。,則

N3DC的度數(shù)為.

15C

20.已知4(2,1),4(-1.0),…,4(.“‘用‘…,(%為正整數(shù)),且滿足寸―

%=1_%>則A2022的坐標(biāo)為____.

21.已知點尸(x,y)位于第四象限,并且它y+4(x,y為整數(shù)),寫出一個符合上述

條件的點P的坐標(biāo)_________.

22.如圖,ABC中,AB=AC,DE是AB的垂直平分線,垂足為D,交AC于

E.若A8=llcm,BCE的周長為17cm,則BC=________cm.

RAC

23.如圖,已知A(1,o),4(i,-1),4(-i,-1)A,(-1,1),4(2,

1),…,則點&010的坐標(biāo)2是________.

!!!:』9

氣______________

O*x

43也

4:\4

1111

40

24.下表分別給出了一次函數(shù)y/=Qx+歷與y2^k2x+b2圖像上部分點的橫坐標(biāo)x和縱

坐標(biāo)y的對應(yīng)值.則當(dāng)x時,yi>y2.

X-4-3-2-1

yi-9-6-30

X-4-3-2-1

>2-1-2-3-4

25.如圖所示,0C平分NAO3,。方平分NCO8,Z4OD=90°,則N8Q£>=

26.如圖,在△ABC中,ZACB=90°,AC^BC,ZA8C的角平分線8E和/84c的

外角平分線A。相交于點P,AP與BC的延長線交于點。.過點尸作P凡LAO交AC的

延長線于點”,交BC的延長線于點F,連接AF并延長交OH于點G.下列結(jié)論中,

正確的是.(填序號)

①/APB=45°,?PF=PA,?DG=AP+GH,@BD=AH+AB.

H

27.如圖,△ADC是45。的直角三角板,二ME是30。的直角三角板,CO與8E交于點

F,則/。尸8的度數(shù)為

A

28.如圖,在長方形ABC。中AS=OC=4,AD=BC=5.延長BC到E,使

CE=2,連接£>E.動點P從點B出發(fā),以每秒2個單位的速度沿8C-CDfD4f

向終點A運動,設(shè)點尸運動的時間為,秒,存在這樣的f,使,DC尸和△DCE全等,則

f的值為.

29.如圖,已知NAOB=90。,NC0D=9(r,0E為NBOD的角平分線,NBOE=25。廁

30.已知點A(3,4),點B(-l,1),在x軸上有兩動點E、F,且EF=1,線段EF在

x軸上平移,當(dāng)四邊形ABEF的周長取得最小值時,點E的坐標(biāo)為.

二、解答題

21

31.(1)解方程:-=0

x+1x

(2)已知等腰三角形的兩邊長為5cm和4cm,求它的周長.

32.如圖,BA=BE,ZA=ZE,NABE=NCBD,EQ交BC于點尸,且

求證:AC//BD.

證明::/ABE=NC8£)(已知),

ZABE+ZEBC=ZCBD+ZEBC()

即NA8C=NEB£>

在^EBD中,

.NABC=NEBD

"=,

ZA=Z£

△ABg/\EBD(),

:.NC=ND()

?:NFBD=ND,

;.NC=(等量代換),

:.AC//BD()

33.如圖,在四邊形ABC。中,AO〃BC,點E為對角線8。上一點,

⑴求證:ABD紂ECB;

(2)若NBOC=65。,求ND3C的度數(shù).

34.如圖,己知:DE//BC,CQ是NACB的平分線,NB=80。,ZA=50°,求:ZEDC

與/BOC的度數(shù).

D,

Ri----------------

35.點O為直線AB上一點,過點0作射線OC,使/BOC=65。,將一直角三角板的

直角頂點放在點。處.

(1)如圖1,將三角板MON的一邊ON與射線0B重合時,則NMOC=

(2)如圖2,將三角板MON繞點。逆時針旋轉(zhuǎn)一定角度,此時0C是/MOB的平分

線,求/BON和/CON的度數(shù).

36.如圖,射線08在鈍角/AOC的內(nèi)部,且/4。8+/4。。=180。,8分2408,

。。平分NAOC.

(1)當(dāng)0B與。。重合時,求NAOC得度數(shù);

(2)若Z40C=100。,求NPO。的度數(shù);

(3)若/40C=/°,求NPOQ的度數(shù)(用含n的代數(shù)式表示).

37.如圖,在等邊△A8C中,點。,E分別在邊BC,4c上,且AE=C£>,BE與相

交于點P,BQ上A。于點0.

(1)求證:AD=BE,

(2)求/尸8。的度數(shù);

⑶若尸。=3,PE=\,求A£>的長.

38.如圖,在平面直角坐標(biāo)中,△ABC各頂點都在小方格的頂點上.

(1)畫出△A8C關(guān)于x軸對稱的圖形△A/8/G;寫出△A/B/G各頂點坐標(biāo)

Ai;Bi;Ci

(2)在y軸上找一點P,使以+P8/最短,畫出P點,并寫出尸點的坐標(biāo)

(3)若網(wǎng)格中的最小正方形邊長為1,則△A/B/G的面積等于:

39.如圖,AABC中,ZABC=ZC,8。是的平分線,44=48,求NBOC的

度數(shù).

40.如圖所示,四邊形ABC。中,NAQC的角平分線OE與NBCC的角平分線CA相

交于E點,已知:NACB=32。,ZCDE=58°.

AD

(2)試說明直線AD〃8C

41.如圖,已知ABC=.FED,NA和N尸是對應(yīng)角,CB和DE是對應(yīng)邊,

AP=8,BE=2.

D

(1)寫出其他對應(yīng)邊及對應(yīng)角:

(2)判斷AC與。F的位置關(guān)系,并說明理由.

(3)求AB的長.

42.在AABC中,ZOZB.如圖①,ADJ_BC于點D,AE平分NBAC.

(1)如圖①,ADLBC于點D,AE平分NBAC,能猜想出NDAE與NB、/C之間

的關(guān)系是什么?并說明理由.

(2)如圖②,AE平分/BAC,F為AE上的一點,且FDLBC于點D,這時NEFD

與NB、/C有何數(shù)量關(guān)系?請說明理由.

(3)如圖③,AE平分NBAC,F為AE延長線上的一點,F(xiàn)DJ_BC于點D,請你寫出

這時NEFD與ZB、NC之間的數(shù)量關(guān)系(只寫結(jié)論,不必說明理由).

圖①圖②T圖③

43.在中,ZACB=90°,AC=BC,直線MN經(jīng)過點C,且AZ),MN于點

D,BE,MN于點E.

(1)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖(1)的位置時,求證:

①AADCZ一C£B:

?DE=AD+BE.

(2)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖(2)、圖(3)的位置時,試問DE、AD.BE具有

怎樣的等量關(guān)系?請直接寫出這個等量關(guān)系.

44.如圖,在中,BD、CE是邊AC、AB上的中線,8。與CE相交于點。,

N是OC的中點.

(1)求證:OC=2OE;

(2)若S&8N=1,求43c的面積.

45.貝貝在銀行的信用卡中存入2萬元,每次取出500元,若卡內(nèi)余額為y(元),取

錢的次數(shù)為x.(利息忽略不計)

(1)寫出y與x之間的函數(shù)關(guān)系式;

(2)求自變量x的取值范圍;

(3)取多少次錢后,余額為原存款的!?

46.水池中有水2()0?,12:00時同時打開兩個每分鐘出水量相等且不變的出水口,

12:06時王師傅打開一個每分鐘進水量不變的進水口,同時關(guān)閉一個出水口,12:14時

再關(guān)閉另一個出水口,12:20時水池中有水56m3,王師傅的具體記錄如下表.設(shè)從

12:00時起經(jīng)過tmin池中有水ym3,右圖中折線ABCD表示y關(guān)于t的函數(shù)圖象.

池中有水

時間

(ri?)

12:0020

12:0412

12:06a

12:14b

12:2056

(1)每個出水口每分鐘出水nP,表格中a=;

(2)求進水口每分鐘的進水量和b的值;

(3)在整個過程中t為何值時,水池有水16m3?

47.如圖,AABC是等腰直角三角形,NBAC=90°,△AC£?是等邊三角形,E為“BC

內(nèi)一點,AC=CE,ZBAE=15°,A。與CE相交于點尸.

(1)求/OFE的度數(shù);

(2)求證:AE-BE.

48.已知兩個全等的等腰直角△ABC、△DEF,其中NAC3=N£>EE=90。,E為A8中

點,△QEP可繞頂點E旋轉(zhuǎn),線段£>E,EF分別交線段CA,CB(或它們所在直線)

(1)如圖I,當(dāng)線段Er經(jīng)過△ABC的頂點C時,點N與點C重合,線段。E交4C于

M,求證:AM=MC;

(2)如圖2,當(dāng)線段E尸與線段BC邊交于N點,線段OE與線段AC交于M點,連

MN,EC,請?zhí)骄?W,MN,CN之間的等量關(guān)系,并說明理由;

(3)如圖3,當(dāng)線段EF與BC延長線交于N點,線段。E與線段AC交于加點,連

MN,EC,請猜想AM,MN,CN之間的等量關(guān)系,不必說明理由.

49.已知,在平面直角坐標(biāo)系中,點A,8的坐標(biāo)分別是(-4-。),伍,0)且

Va+4+|/?-2|=0.

(1)求。,b的值;

(2)在坐標(biāo)軸上是否存在點C,使三角形A8C的面積是8?若存在,求出點C的坐

標(biāo);若不存在,請說明理由.

50.如圖,在平面直角坐標(biāo)系xO),中,點A(a,0),B(c,c),C(0,c),且滿足(a-

c+4)2+與七=0,P點從A點出發(fā)沿x軸正方向以每秒2個單位長度的速度勻速移

動,。點從。點出發(fā)沿y軸負(fù)方向以每秒1個單位長度的速度勻速移動.

(2)當(dāng)P、Q分別是線段A。,OC上時,連接P8,QB,使ZPAB=2SMBC,求出點P

的坐標(biāo):

(3)在P、。的運動過程中,當(dāng)NCBQ=30。時,請?zhí)骄縉OPQ和NPQ8的數(shù)量關(guān)

系,并說明理由.

參考答案:

1.9

【分析】分別令x=0,y=0,求出A、B兩點坐標(biāo),再利用三角形面積公式即可求出面

積.

【詳解】當(dāng)x=0時,丫=一6,

點坐標(biāo)為(0,-6),即08=6,

當(dāng)y=0時,%=3,

???A點坐標(biāo)為(3,0),即。4=3,

???S“o8=;°4OB=gx3x6=9,

故答案為:9.

【點睛】本題考查了求一次函數(shù)圖象與坐標(biāo)軸形成的三角形的面積,求出一次函數(shù)與坐標(biāo)

軸的交點坐標(biāo)是解題關(guān)鍵.

2.y=-2x+2

【分析】利用“左加右減”的規(guī)律解答.

【詳解】把直線AB:丫=-2犬-2沿x軸的正半軸向右平移2個單位長度后得到直線CD,

則直線CD的函數(shù)解析式是:y=-2(x-2)-2=—2x+2,即y=-2x+2.

故答案是:y=-2x+2.

【點睛】本題主要考查了一次函數(shù)圖象與幾何變換,難度不大,掌握平移規(guī)律“左加右減,

上加下減"即可.

3.等邊

【詳解】試題分析:在△ABC中,ZA=ZB=ZC,根據(jù)三角形內(nèi)角和為180。,可得出各

角的度數(shù)均為60。,即可得到結(jié)果.

在△ABC中,NA=NB=NC,又NA+NB+NC=180。,

所以NA=NB=NC=60。,即△ABC為等邊三角形.

考點:等邊三角形的判定,三角形的內(nèi)角和定理

點評:三角形的內(nèi)角和定理是初中數(shù)學(xué)的重點,貫穿于整個初中數(shù)學(xué)的學(xué)習(xí),是中考中比

較常見的知識點,一般難度不大,需熟練掌握.

4.1

【分析】根據(jù)線段垂直平分線的性質(zhì)得到DA=DB,得到/B=NDAB,根據(jù)角平分線的性

答案第1頁,共35頁

質(zhì)得出NDAC=NDAB,從而求出/B=30。,根據(jù)直角三角形的性質(zhì)計算即可.

【詳解】解::DE是AB的垂直平分線,

,DA=DB,

.*.ZB=ZDAB,

:AD是/CAB的平分線,

/.ZDAC=ZDAB,

VZC=90°,

/.ZB=30o,

ADE=|BD,

:AD是NCAB的平分線,ZC=90°,DE±AB,

,DE=DC,

ADC=yBD,

:BD=3,

;.DC=1,即DE=1,

故答案為1.

【點睛】本題考查的是線段垂直平分線的性質(zhì)、角平分線的性質(zhì),及直角三角形中30。所

對的直角邊是斜邊的一半,掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是

解題的關(guān)鍵.

5.6

【分析】根據(jù)題意設(shè)一次函數(shù)關(guān)系式為丫=1?+1),將(-1,m)、(1,3)、(3,n)代入可

得相應(yīng)的等式,求解后即可得出答案.

【詳解】解:設(shè)一次函數(shù)關(guān)系式為y=kx+b,將(-1,m)、(1,3)、(3,n)代入得:

m=-k+b,k+b=3,n=3k+b,

.,.m+n=-k+b+3k+b=2k+2b=2x3=6.

故答案為:6.

【點睛】本題考查一次函數(shù)圖象上點的坐標(biāo)特征及待定系數(shù)法求函數(shù)解析式的知識,比較

簡單,注意掌握待定系數(shù)法的運用.

6.到線段兩個端點距離相等的點在線段的垂直平分線上;兩點確定一條直線.

【詳解】試題分析:直接利用線段的垂直平分線的性質(zhì)及直線的性質(zhì)進而分析得到答案.

答案第2頁,共35頁

試題解析:分別以點A和點B為圓心,大于遭的長為半徑作弧,兩弧相交于"兩點的

依據(jù)是:到線段兩個端點距離相等的點在線段的垂直平分線上.

連接的依據(jù)是:兩點確定一條直線.

故答案為到線段兩個端點距離相等的點在線段的垂直平分線上,兩點確定一條直線.

7.x<2##2>x

【分析】根據(jù)一次函數(shù)的性質(zhì),結(jié)合函數(shù)圖象,可以寫出不等式"+6>0的解集.

【詳解】解:由圖象可得,函數(shù)與x軸的交點為(2,0),y隨x的增大而減小,

不等式區(qū)+b>0的解集是x<2.

故答案為:x<2.

【點睛】本題主要考查一次函數(shù)與一元一次不等式,解答本題的關(guān)鍵是明確題意,利用數(shù)

形結(jié)合的思想解答.

8.2

3

【分析】由作圖步驟可知BG為NABC的角平分線,過G作GMLA8于M,GNLBC于

N,可得GM=GN,最后運用三角形的面積公式解答即可.

【詳解】解:如圖,過點G作GMLAB于M,GN1BC于N.

?:GM1BA,GN1BC,

:.GM=GN,

c-ABxGM、

.3MBe_2=4A8P=2

5ABec'BCXGNBC3

2

2

故答案為:—.

【點睛】本題考查角平分線定理和三角形面積公式的應(yīng)用,通過作法發(fā)現(xiàn)角平分線并靈活

應(yīng)用角平分線定理是解答本題的關(guān)鍵.

9.x>0

答案第3頁,共35頁

【分析】觀察函數(shù)圖形得到當(dāng)xNO時,一次函數(shù)>=以+。的函數(shù)值小于或等于2,即

ax+b<2.

【詳解】解:根據(jù)題意得當(dāng)x±O時,ax+b<2,

即不等式的解集為xNO.

故答案為:x>0.

【點睛】本題考查了一次函數(shù)與一元一次不等式:從函數(shù)的角度看,就是尋求使一次函數(shù)

的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直

線廣質(zhì)+〃在x軸上(或下)方部分所有的點的橫坐標(biāo)所構(gòu)成的集合.

10.(0,-5)

【分析】代入x=0求出y值,進而可得出直線與y軸的交點坐標(biāo).

【詳解】解:當(dāng)x=0時,y=0-5=-5,

二一次函數(shù)y=x-5的圖像與y軸的交點坐標(biāo)是(0,-5).

故答案為:(0,-5).

【點睛】本題考查了一次函數(shù)圖像上點的坐標(biāo)特征,牢記直線上任意一點的坐標(biāo)都滿足函

數(shù)關(guān)系式y(tǒng)=H+b(%w。)是解題關(guān)鍵.

II.(4,-4)或(2,2)

【分析】根據(jù)點P到兩個坐標(biāo)軸的距離相等可得a+l+5-3eO或a+l=5-3a,解方程可得a

的值,進而可得點P的坐標(biāo).

【詳解】解:由題意得:a+l+5-3a=0或a+l=5-3a,

解得a=3或。=1.

故當(dāng)”=3時,P(4,-4);

當(dāng)a=l時,P(2,2);

故答案為:(4,-4)或(2,2).

【點睛】此題主要考查了點的坐標(biāo),關(guān)鍵是掌握點尸到兩個坐標(biāo)軸的距離相等時,橫縱坐

標(biāo)相等或相反數(shù)關(guān)系.

12.44

[分析]根據(jù)平行線的性質(zhì)和翻折不變性解答.

【詳解】解「:AD//BC,

:.NQFE=1800-NCEF=180°-68°=112°,

答案第4頁,共35頁

,ZD'FE=112°,ZGF£=180°-112°=68°,

二/GF0=112°-68°=44°.

故答案為:44.

【點睛】本題考查了平行線的性質(zhì)和翻折不變性,注意觀察圖形.

13.3

【分析】如圖,過M點做x軸的垂線,交x軸于點MMN的長度即為所求.

【詳解】解:如圖,

A/r-3

當(dāng)MNLx軸時,MN的長度最小,最小值為3,

故答案為:3.

【點睛】本題考查平面直角坐標(biāo)系中點到坐標(biāo)軸的距離.掌握點到直線上的所有連線中,

垂線段最短是解題的關(guān)鍵.

14.四

【分析】根據(jù)點P在第一象限,即可得到點m的符號,從而得到-m的符號,即可得出點

B所在的位置.

【詳解】點P(機,2)在第一象限,得〃?>0.由不等式的性質(zhì),得3>0,-/n<0

那么點B(3,-機)在第四象限.

故答案為:四.

【點睛】此題主要考查點的坐標(biāo)與象限的關(guān)系,解題的關(guān)鍵是熟記各象限對應(yīng)的點的坐標(biāo)

符號.

15.5&

【分析】依據(jù)題意得到三個關(guān)系式:a+b=3叵c,ab=10,a2+b2=c2,運用完全平方公式即

5

可得到c的值.

【詳解】解:???點P(l,亭)在“勾股一次函數(shù)”>=(+/的圖象上,把P(l,乎)代入得:

答案第5頁,共35頁

3石ci。日口心36

---=一+—,即〃+6=------c,

5cc5

???。,4c分別是RtABC的三條邊長,

ZC=90°,RtABC的面積為10,

/.—ab=\0,a2+h2=c2,故他=20,

2

(〃+b)2-lab=c2,

/.3fc)-2x20=c2,故《c?=40,

解得:C=5A/2.

故答案為:5&.

【點睛】此類考查了一次函數(shù)圖象上點的坐標(biāo)特征以及勾股定理的應(yīng)用,根據(jù)題目中所給

的材料結(jié)合勾股定理和乘法公式是解答此題的關(guān)鍵.

16.5

【分析】分別表示出△ABD與△ACD的周長,再作差即可得出結(jié)果.

【詳解】解:?.?AD是中線,

ABD=DC,

VAB=17,AC=12,

/.CAABD-CAACD=AB+AD+BD-AC-AD-DC=AB-AC=5,

故答案為:5

【點睛】本題考查的是中線的性質(zhì),掌握中線的性質(zhì)是解題的關(guān)鍵.

17.y=2Ax

【詳解】根據(jù)表格,易得規(guī)律:y=2x+0.1x=2.1x.

故答案:y=2Ax.

18.竺

3

【詳解】分析:由圖象可以看出,0-lmin內(nèi),小剛的速度可由距離減小量除以時間求得,

l-3min內(nèi),根據(jù)等量關(guān)系“距離減小量=小剛跑過的路程+小強跑過的路程”可得出小強的速

度;由于小剛的速度始終是180米/分,小強的速度開始是220米/分,則他們的速度之差是

40米/分,則10分鐘相差400米,設(shè)再經(jīng)過,分鐘兩人相遇,利用相遇問題得到

180r+120r=400,然后求出r后加上前面的15分鐘可得到小剛從家出發(fā)到他們再次相遇的時

間總和.

答案第6頁,共35頁

詳解:小剛比賽前的速度v1=(540-440)=100(米/分),

設(shè)小強比賽前的速度為丫2(米/分),

根據(jù)題意得2x(v1+v2)=440,解得v2=120米/分,

小剛的速度始終是180米/分,小強的速度開始為220米/分,他們的速度之差是40米/分,

10分鐘相差400米,

4

設(shè)再經(jīng)過f分鐘兩人相遇,則180t+120t=400,解得仁](分)

所以小剛從家出發(fā)到他們再次相遇時.5+10+4g=]49(分).

49

故答案為:y.

點睛:本題考查了一次函數(shù)的應(yīng)用:會利用一次函數(shù)圖象解決行程問題的數(shù)量關(guān)系,相遇

問題,追擊問題的綜合應(yīng)用;解答時靈活運用行程問題的數(shù)量關(guān)系解答是關(guān)鍵.

19.40。##40度

【分析】根據(jù)MS證明ABE^ACD,再利用全等三角形的性質(zhì)=然后由三

角形的外角性質(zhì)=ZBOC^ZACD+ZBDC,可說明

NBAC=NBDC,再利用等腰三角形的性質(zhì)可求出NABC=ZACB=70。,最后利用三角形

的內(nèi)角和解答即可.

【詳解】解:AEAD=ABAC,

:.ABAC-NE4c=ZE4D-ZE4C,

即=

在.ABE和AC£)中,

AB=AC

<ZBAE=ACAD,

AE^AD

:.ABE^ACD(SAS),

:.ZABD=ZACD,

■:NBOC是;ABO和DCO的外角,

二ZBOC=ZABD+ABAC,ZBOC=ZACD+ZBDC,

,ZABD+NBAC=ZACD+ZBDC,

:.ABAC=NBDC,

VAB=AC,ZACB=-JO°,

答案第7頁,共35頁

???ZABC=ZACB=70。,

???Za4C=180°-Z4BC-ZACB=180o-70o-70o=40°,

:.ZBDC=ZBAC=40°.

故答案為:40°.

【點睛】本題考查了全等三角形的判定與性質(zhì),三角形的外角性質(zhì),等腰三角形的性質(zhì),

三角形的內(nèi)角和等知識.根據(jù)全等三角形的判定和性質(zhì)是解題的關(guān)鍵,也是本題的難點.

20.(g,q##(0.5,0)

【分析】根據(jù)-,yk^\-yk-1,求出前幾個點的坐標(biāo)會發(fā)現(xiàn)規(guī)律,這些點每6

個為一個循環(huán),根據(jù)規(guī)律求解即可.

【詳解】解::A/(2,1),A2(-1,0),Ak(成,yk),…,(無為正整數(shù)),且滿足

1

xk=—,yk=\-yk-b

1—Xk-\

AA?(g,1),A4(2,0),As(-1,1),A60),A7(2,1),Aw(-1,0),

通過以上幾個點的坐標(biāo)可以發(fā)現(xiàn)規(guī)律,這些點每6個為一個循環(huán),

:2022=6X337,

A2022的坐標(biāo)為(g,0).

故答案為:(4,0).

【點睛】本題主要考查規(guī)律型:點的坐標(biāo),讀懂題意,準(zhǔn)確找出點的坐標(biāo)規(guī)律是解答此題

的關(guān)鍵.

21.(1,-2)(答案不唯一).

【分析】直接利用第四象限內(nèi)點的坐標(biāo)特點得出x,y的取值范圍,進而得出答案.

【詳解】解:???點P(X,y)位于第四象限,并且xWy+4(x,y為整數(shù)),

.,.x>0,y<0,

?,.當(dāng)x=l時,l<y+4,

解得:0>y>-3,

???y可以為:-2,

故寫一個符合上述條件的點P的坐標(biāo)可以為:(1,-2)(答案不唯一).

故答案為(1,-2)(答案不唯一).

【點睛】此題主要考查了點的坐標(biāo),正確把握橫縱坐標(biāo)的符號是解題關(guān)鍵.

答案第8頁,共35頁

22.6

【分析】根據(jù)垂直平分線的性質(zhì)可得AE=BE,即可得出AC=BE+CE,根據(jù)△BCE的周長

即可得答案.

【詳解】VDE是AB的垂直平分線,

,AE=BE,

:AB=AC,AC=AE+CE,AB=11,

.?.BE+CE=AC=11,

BCE的周長為17cm,

;.BC+CE+BE=17,BPBC+11=17,

解得:BC=6.

故答案為:6

【點睛】本題考查了線段的垂直平分線性質(zhì),熟練掌握垂直平分線上任意一點,到線段兩

端點的距離相等是解題關(guān)鍵.

23.(503,-503)

【分析】根據(jù)圖象得出點的坐標(biāo)的規(guī)律,依據(jù)規(guī)律求解即可.

【詳解】解:根據(jù)圖象得:4,4,4等在第四象限,每四個點循環(huán)一次,

;2010+4=5022,

與A?都在第四象限,

橫坐標(biāo)為:(2010-2)+4+1=503,

縱坐標(biāo)為-503,

故答案為:(503,-503).

【點睛】題目主要考查坐標(biāo)與圖形,點坐標(biāo)規(guī)律探索,理解題意,找出點的坐標(biāo)的規(guī)律是

解題關(guān)鍵.

24.>-2

【分析】根據(jù)待定系數(shù)法求出)人”的函數(shù)表達式,再由解一元一次不等式即可解

答.

【詳解】解:將x=-1,y/=0,x=—2,y/=-3代入y/=Z/x+句中,得:

答案第9頁,共35頁

.?.y/=3x+3,

將x=-4,y2=—1,x=—3,2代入”=%2%+岳中,得:

—1=~41幺+b.--

.?y2=~x—5,

由得:3x+3>—x—5,

解得:x>—2,

即當(dāng)尤>一2時,y/>”,

故答案為:>-2.

【點睛】本題考查待定系數(shù)法求一次函數(shù)表達式、解一元一次不等式,熟練掌握待定系數(shù)

法求函數(shù)表達式的解法步驟是解答的關(guān)鍵.

25.30

【分析】直接利用角平分線的定義得出NBOC=J/AOB=g(90P+NBOD)=

45°+|zBOD,進而得出方程NBOD=;NCOB=g(45°+|zBOD),從而求出答案.

【詳解】解::/4">=90°,

VOC平分NAOB,

/.ZBOC=|ZAOB=^(90°+ZBQD)=45。+;/80£),

:OD平分NCOB,

.*.ZBOD=yZCOB=1(45°+^ZBO£)),

二ZBOD=30°.

故答案為:30.

【點睛】此題主要考查了角平分線的定義,正確得出關(guān)于/BOD的方程是解題關(guān)鍵.

26.①②④

【分析】①根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和與角平分線的定義表示

出NC4P,再根據(jù)角平分線的定義可得NABP=g/ABC,然后利用三角形的內(nèi)角和定理

整理即可得解;

②先求出/APB=/FP8,再利用“角邊角”證明△48P和△以尸全等,根據(jù)全等三角形對

應(yīng)邊相等得至IJAB=8凡AP^PF;

答案第10頁,共35頁

③根據(jù)PF_LA。,ZACB=90°,可得AG_LQH,然后求出NAOG=/OAG=45。,再根據(jù)

等角對等邊可得。G=AG,再根據(jù)等腰直角三角形兩腰相等可得GH=GF,然后求出力G

=GH+AF,根據(jù)4尸=正以可得結(jié)論;

④根據(jù)直角的關(guān)系求出NAHP=NFDP,然后利用‘'角角邊"證明△A/ZP與AFOP全等,根

據(jù)全等三角形對應(yīng)邊相等可得DF=AH.

【詳解】解:①:/ABC的角平分線BE和NBAC的外角平分線相交于點P,

/.ZABP^yZABC,(90°+/ABC)=45°+g/ABC,

在ZkABP中,ZAPB=180°-ZBAP-ZABP=\SO0-(45°+1ZABC+900-ZABC)-

/4BC=180°-45°-1ZABC-90°+ZABC-yNABC=45°,故①正確;

PFVAD,ZAPB=45°(已證),

:.ZAPB^ZFPB=45°,

?;PB為/A8c的角平分線,

二/ABP=NFBP,

在△482和^FBP中,

,NAPB=NFPB

"PB=PB,

NABP=NFBP

:./\ABP^^FBP(ASA),

:.AB=BF,AP=PF,故②正確;

?':PFLAD,ZACB=90°,由④知PO=P”,

4DPH為等腰直角三角形,

AZPDH=45°,

VZB4F=45°,

:.AGA.DH,

":AP=PF,PF1.AD,

.'.ZPAF=45°,

:.ZADG=ZDAG=45°,

:.DG=AG,

;NBA尸=45°,AG1DH,

答案第II頁,共35頁

.?.△AOG與AFG//都是等腰直角三角形,

:.DG=AG,GH=GF,

:.DG=GH+AF,

?:AF=&PA,

:.DG=^2AP+GH,故③錯誤;

(4)VZACB=90°,PFLAD,

:.NFDP+NHAP=90°,/A”P+N4AP=90°,

NAHP=NFDP,

':PFLAD,

:.NAPH=ZFPD=90°,

在^AHP^^FOP中,

'ZAHP=2FDP

"ZAPH=NFPD,

AP=PF

:./\AHP^/\FDP(A4S),

:.DF=AH,

':BD=DF+BF,

又,:AB=BF,

:.BD=AH+AB,故④正確;

故答案為:①②④.

【點睛】本題考查外角的性質(zhì),角平分線的性質(zhì),三角形內(nèi)角和定理,全等三角形的判定

與性質(zhì),等腰三角形的性質(zhì),解題關(guān)鍵是掌握外角的性質(zhì),角平分線的性質(zhì),三角形內(nèi)角

和定理,全等三角形的判定與性質(zhì),等腰三角形的性質(zhì).

27.15°

【分析】根據(jù)三角板的性質(zhì)和三角形外角的性質(zhì)求解即可.

【詳解】是45。的直角三角板,一ABE是30。的直角三角板

AZADC=45°,ZABE=30°

,/NADC=NABE+NDFB

ZDFB=ZADC-ZABE=45°-30°=15°

故答案為:15。.

答案第12頁,共35頁

【點睛】本題考查了三角板的角度問題,掌握三角板的性質(zhì)和三角形外角的性質(zhì)是解題的

關(guān)鍵.

28.3或以

22

【分析】分兩種情況進行討論,根據(jù)題意得出。尸=5-2,=2和。尸=9-2/=2,即可求

得.

【詳解】解:當(dāng)P在上時,由題意得BP=2r,

,CP=BC-BP=5—2t,

NDCP=ZDCE=90。,CD為公共邊,

...要使ZX*DCE,則需CP=CE,如圖1所示:

CE=2,

:.5-2t=2,

3

???/,=一,

2

即當(dāng).=3時,DCP^,DCE;

2

當(dāng)P在AO上時,由題意得3C+C£>+£>尸=2f,

VBC=5,CD=4,

:.DP=2t-9,

':NCDP=NDCE=90。,CD為公共邊,

.?.要使一。C如COE,則需。P=CE,如圖2所示:

答案第13頁,共35頁

即2r—9=2,

?.?,,=—H,

2

即當(dāng)/=日■時,DCPZCDE;

綜上所述:當(dāng)》=士3或"1二1時,0cp和CDE全等.

22

故答案為:;3或一11.

【點睛】本題考查了全等三角形的判定等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考

問題,屬于中考??碱}型.

29.130°

【分析】直接利用角平分線的定義結(jié)合度分秒換算方法分析得出答案.

【詳解】解::OE為NBOD的平分線,

;.2/BOE=/BOD,

ZBOE=25°,

.,.ZBOD=50°,

■:ZAOB=ZCOD=90°,ZAOB+ZCOD+ZAOC+ZBOD=360°,

,ZAOC=3600-ZAOB-ZCOD-ZBOD,

=360o-90°-90o-50°,

=130°.

【點睛】此題主要考查了角平分線的定義以及度分秒的換算,正確理解相關(guān)定義是解題關(guān)

鍵.

30.(--,0)

5

【詳解】如圖,過點A作x軸的平行線,并且在這條平行線上截取線段AA,,使AA,=1,

答案第14頁,共35頁

作點B關(guān)于x軸的對稱點B,,連接AB1交x軸于點E,在x軸上截取線段EF=1,則此

時四邊形ABEF的周長最小.

VB(-1,1),.??B'(-1,-1).

設(shè)直線AB的解析式為y=kx+b,

2k+b=4

—k+b=—1

52

解得,k=-,b=-.

??.直線的解析式為y=5jx+21,

522

當(dāng)y=0時,-x+-=0,解得x=-£.

2

故線段EF平移至如圖所示位置時,四邊形ABEF的周長最小,此時點E的坐標(biāo)為

0).

點睛:本題考查了待定系數(shù)法求一次函數(shù)的解析式,軸對稱-最短路線問題,根據(jù)“兩點之

間,線段最短”確定點E、F的位置是關(guān)鍵,也是難點.

31.(1)產(chǎn)1;(2)三角形的周長為14cm或13cm

【分析】(1)先去分母,然后解一元一次方程,最后進行檢驗即可得;

(2)根據(jù)題意進行分類討論:①當(dāng)腰長是5cw時,則三角形的三邊是5cm,5cm,4cm;

②當(dāng)腰長是4。"時,三角形的三邊是4。小4”〃,5cm;考慮三邊能否構(gòu)成三角形,然后求

周長即可得.

21

【詳解】(1)解:-£---L=o,

x+1x

答案第15頁,共35頁

方程兩邊同時乘以:x(x+l)得2x-(x+l)=0,

2x-x-l=0,

X=1

檢驗:x=l時,x(x+l)wO,

??.X=l是原方程的解;

(2)解:等腰三角形的兩邊長分別為4cm和5”“,

①當(dāng)腰長是5c7〃時,則三角形的三邊是5c5,5cm,4cm,

5+5>4,滿足三角形的三邊關(guān)系,

???三角形的周長是5+5+4=14(cm);

②當(dāng)腰長是4。*時,三角形的三邊是4?!ǎ?cm,5cm,

4+4>5,滿足三角形的三邊關(guān)系.

.??三角形的周長是5+4+4=13(即);

綜上,三角形的周長為14c,"或13cvn.

【點睛】題目主要考查解分式方程及等腰三角形的定義,三角形三邊關(guān)系等,理解題意,

綜合運用這些知識是解題關(guān)鍵.

32.答案見解析

【分析】結(jié)合等式的性質(zhì)利用ASA可證△由全等三角形對應(yīng)角相等的性質(zhì)

等量代換可得/C=/FB£>,根據(jù)內(nèi)錯角相等,兩直線平行可得AC〃BD

【詳解】解:,?,NA8E=/CB£)(已知),

/.(等式的性質(zhì)),即/ABC=NE8O

在△48。和4EB。中,

'NABC=NEBD

<AB=BE,

NA=NE

AABC^AEfi£)(ASA),

:.ZC=ZD(全等三角形對應(yīng)角相等)

■:NFBD^ND,

.?.NC=NFBD(等量代換),

,AC〃B。(內(nèi)錯角相等,兩直線平行).

答案第16頁,共35頁

故答案為:等式的性質(zhì);AB=BE;ASA;全等三角形對應(yīng)角相等;ZFBD;內(nèi)錯角相等,

兩直線平行.

【點睛】本題主要考查了全等三角形的判定與性質(zhì)及平行線的判定,熟練的掌握每一步證

明的依據(jù)是解題的關(guān)鍵.

33.(1)見詳解

(2)Z£>BC=50°

【分析】(1)由“AAS”可證,

(2)由全等三角形的性質(zhì)可得8。=8C,由等腰三角形的性質(zhì)可求解.

【詳解】(1)證明:AD^BC,

,ZADB=ZEBC,

在△43£)和,反8中,

Z=NBEC

-AB=EC,

NADB=NEBC

:.ABDRECB(A4S);

(2)解:VABD^ECB,

:.BD=BC,

:.ZBDC=ZBCD=65°,

:.Z£)fiC=50°.

【點睛】本題考查了全等三角形的判定和性質(zhì),平行線的性質(zhì)以及等腰三角形的性質(zhì),還

考查學(xué)生運用定理進行推理的能力,題目比較典型,難度適中.

34.NBDC=75。,NEDC=25。

【分析】先根據(jù)三角形內(nèi)角和定理求出NACB=50。,再由角平分線的定義求出

ZBCD=ZACD=-ZACB=25,則由三角形內(nèi)角和定理可求出N8DC=180。-/a

2

/BCD=75°,再由平行線的性質(zhì)即可得到NEDC=/BCD=25。.

【詳解】解:?;NA=50°,NB=80°,

二ZACB=180°-ZA-ZB=50°,

平分/ACB,

答案第17頁,共35頁

,ZBCD=ZACD=-ZACB=25,

2

ZBDC=1800-ZB-ZBCD=75°,

?;DE〃BC,

:.NEDC=NBCD=25。.

【點睛】本題主要考查了三角形內(nèi)角和定理,角平分線的定義,平行線的性質(zhì),解題的關(guān)

鍵在于能夠熟練掌握相關(guān)知識進行求解.

35.(1)25°;(2)25°.

(詳解】試題分析:(1)根據(jù)ZMON和ZBOC的度數(shù)可以算出ZMOC的度數(shù),

(2)根據(jù)0C是NMOB的平分線,可求出NMOC=65。,NBOC=65。,因為NMON=90。,利用角的

和差關(guān)系可求出:NCON=NMON—NMOC=90。~65。=25。,NBON=NBOC—NCON,

即NBON=65°-25°=40°.

試題解析:⑴因為NMCW=9()o,/BOC=65。,

所以ZMOC=/MON-NBOC=90°-65°=25°.

故答案為25°.

(2)因為/8OC=65)OC是/M08的平分線,

所以ZM0B=2ZB0C=130°,

所以ZBON=ZMOB-ZMON=130°-90°=40°,

所以/CON=ZCOB-ZBO/V=65°-40°=25°.

點睛:本題主要考查角的和差關(guān)系以及角平分線的定義進行角度的計算,解決本題的關(guān)鍵要學(xué)

會分析簡單的幾何圖形,弄清角與角之間的和差關(guān)系.

36.(1)120°;(2)10°;(3)n°-90°

【分析】(1)根據(jù)角平分線的定義得到AOB=/BOC=g/AOC,再結(jié)合

ZAOB+ZAOC=180°,可得NAOC的度數(shù);

(2)根據(jù)NAOC得到/A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論