版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省洛陽市汝陽縣實驗高中2025屆高二數學第一學期期末質量跟蹤監(jiān)視模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過拋物線C:y2=4x的焦點F分別作斜率為k1、k2的直線l1、l2,直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,若|k1·k2|=2,則|AB|+|DE|的最小值為()A.10 B.12C.14 D.162.設,,,則,,大小關系是A. B.C. D.3.函數的遞增區(qū)間是()A. B.和C. D.和4.已知數列的前項和,且,則()A. B.C. D.5.1852年英國來華傳教士偉烈亞力將《孫子算經》中“物不知數”問題解法傳至歐洲,西方人稱之為“中國剩余定理”.現有這樣一個問題:將1到200中被3整除余1且被4整除余2的數按從小到大的順序排成一列,構成數列,則=()A.130 B.132C.140 D.1446.在等比數列中,,,則()A. B.或C. D.或7.如圖,在三棱錐中,是線段的中點,則()A. B.C. D.8.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件9.已知x,y是實數,且,則的最大值是()A. B.C. D.10.若雙曲線經過點,且它的兩條漸近線方程是,則雙曲線的方程是()A. B.C. D.11.若直線被圓截得的弦長為,則的最小值為()A. B.C. D.12.一盒子里有黑色、紅色、綠色的球各一個,現從中選出一個球.事件選出的球是紅色,事件選出的球是綠色.則事件與事件()A.是互斥事件,不是對立事件 B.是對立事件,不是互斥事件C.既是互斥事件,也是對立事件 D.既不是互斥事件也不是對立事件二、填空題:本題共4小題,每小題5分,共20分。13.方程表示雙曲線,則實數k的取值范圍是___________.14.已知為拋物線:的焦點,為拋物線上在第一象限的點.若為的中點,為拋物線的頂點,則直線斜率的最大值為______.15.已知直線l1:(1)x+y﹣2=0與l2:(1)x+ay﹣4=0平行,則a=_____.16.已知滿足約束條件,則的最小值為___________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點分別為,,橢圓上一點滿足,且的面積為(1)求橢圓的方程;(2)直線與橢圓有且只有一個公共點,過點作直線的垂線.設直線交軸于,交軸于,且點,求的軌跡方程18.(12分)已知橢圓C:的離心率為,點和點都在橢圓C上,直線PA交x軸于點M(1)求橢圓C的方程,并求點M的坐標(用m,n表示);(2)設O為原點,點B與點A關于x軸對稱,直線PB交x軸于點N,問:y軸上是否存在點Q(不與O重合),使得?若存在,求點Q的坐標,若不存在,說明理由19.(12分)已知函數,曲線在點處的切線與直線垂直(其中為自然對數的底數)(1)求的值;(2)是否存在常數,使得對于定義域內的任意,恒成立?若存在,求出的值;若不存在,請說明理由20.(12分)已知數列滿足且(1)求證:數列為等差數列,并求數列的通項公式;(2)設,求數列的前n項和為.21.(12分)已知數列滿足,,設.(1)證明數列為等比數列,并求通項公式;(2)設,求數列的前項和.22.(10分)北京、張家港2022年冬奧會申辦委員會在俄羅斯索契舉辦了發(fā)布會,某公司為了競標配套活動的相關代言,決定對旗下的某商品進行一次評估.該商品原來每件售價為25元,年銷售8萬件.(1)據市場調查,若價格每提高1元,銷售量將相應減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?(2)為了抓住申奧契機,擴大該商品的影響力,提高年銷售量.公司決定立即對該商品進行全面技術革新和營銷策略改革,并提高定價到x元.公司擬投入萬作為技改費用,投入50萬元作為固定宣傳費用,投入萬元作為浮動宣傳費用.試問:當該商品改革后的銷售量a至少應達到多少萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設出l1的方程為,與拋物線聯(lián)立后得到兩根之和,兩根之積,用弦長公式表達出,同理表達出,利用基本不等式求出的最小值.【詳解】拋物線C:y2=4x的焦點F為,直線l1的方程為,則聯(lián)立后得到,設,,,則,同理設可得:,因為|k1·k2|=2,所以,當且僅當,即或時,等號成立,故選:B2、A【解析】構造函數,根據的單調性可得(3),從而得到,,的大小關系【詳解】考查函數,則,在上單調遞增,,(3),即,,故選:【點睛】本題考查了利用函數的單調性比較大小,考查了構造法和轉化思想,屬基礎題3、C【解析】求導后,由可解得結果.【詳解】因為的定義域為,,由,得,解得,所以的遞增區(qū)間為.故選:C.【點睛】本題考查了利用導數求函數的增區(qū)間,屬于基礎題.4、C【解析】由an=Sn-Sn-1,【詳解】解:因為,所以,,兩式相減可得,即,因為,,所以,即,時,也滿足上式,所以,所以,故選:C.5、A【解析】分析數列的特點,可知其是等差數列,寫出其通項公式,進而求得結果,【詳解】被3整除余1且被4整除余2的數按從小到大的順序排成一列,這樣的數構成首項為10,公差為12的等差數列,所以,故,故選:A.6、C【解析】計算出等比數列的公比,即可求得的值.【詳解】設等比數列的公比為,則,則,所以,.故選:C.7、A【解析】根據給定幾何體利用空間向量基底結合向量運算計算作答.【詳解】在三棱錐中,是線段的中點,所以:.故選:A8、B【解析】求出的等價條件,結合充分條件和必要條件的定義判斷可得出結論.【詳解】,因“”“”且“”“”,因此,“”是“”的必要不充分條件.故選:B.9、D【解析】將方程化為圓的標準方程,則的幾何意義是圓上一點與點連線的斜率,進而根據直線與圓相切求得答案.【詳解】方程可化為,表示以為圓心,為半徑的圓,的幾何意義是圓上一點與點A連線的斜率,設,即,當此直線與圓相切時,斜率最大或最小,當切線位于切線AB時斜率最大.此時,,,所以的最大值為.故選:D10、A【解析】根據雙曲線漸近線方程設出方程,再由其過的點即可求解.【詳解】漸近線方程是,設雙曲線方程為,又因為雙曲線經過點,所以有,所以雙曲線方程為,化為標準方程為.故選:A11、D【解析】先根據已知條件得出,再利用基本不等式求的最小值即可.【詳解】圓的標準方程為,圓心為,半徑為,若直線被截得弦長為,說明圓心在直線:上,即,即,∴,當且僅當,即時,等號成立故選:D.【點睛】本題主要考查利用基本不等式求最值,本題關鍵是求出,屬常規(guī)考題.12、A【解析】根據事件的關系進行判斷即可.【詳解】由題意可知,事件與為互斥事件,但事件不是必然事件,所以,事件與事件是互斥事件,不是對立事件.故選:A.【點睛】本題考查事件關系的判斷,考查互斥事件和對立事件概率的理解,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題可得,即求.【詳解】∵方程表示雙曲線,∴,∴.故答案為:.14、1【解析】由題意,可得,設,,,根據是線段的中點,求出的坐標,可得直線的斜率,利用基本不等式即可得結論【詳解】解:由題意,可得,設,,,,是線段的中點,則,,,當且僅當時取等號,直線的斜率的最大值為1故答案為:115、2【解析】根據兩直線平行的充要條件求解【詳解】因為已知兩直線平行,所以,解得故答案為:【點睛】本題考查兩直線平行的充要條件,兩直線平行的充要條件是,或,在均不為0時,用表示容易理解與記憶16、【解析】根據題意,作出可行域,進而根據幾何意義求解即可.【詳解】解:作出可行域如圖,將變形為,所以根據幾何意義,當直線過點時,有最小值,所以聯(lián)立方程得,所以的最小值為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用可得,由橢圓關系可求得,進而得到橢圓方程;(2)將與橢圓方程聯(lián)立可得,得,結合韋達定理可確定點坐標,由此可得方程,進而得到,化簡整理即可得到所求軌跡方程.【小問1詳解】由焦點坐標可知:;,即,,,解得:,,解得:(舍)或,,橢圓的方程為:;【小問2詳解】由得:,,整理可得:;,解得:,,則,令,解得:;令,解得:;,即,又,,則的軌跡方程為:.【點睛】思路點睛:本題考查動點軌跡方程的求解問題,解題基本思路是能夠利用變量表示出所求點的坐標,根據坐標之間關系,化簡整理消掉變量得到所求軌跡方程;易錯點是忽略題目中的限制條件,軌跡中出現多余的點.18、(1),;(2)存在或,使得,理由見解析.【解析】(1)根據離心率,及求出,,進而得到橢圓方程及用m,n表示點M的坐標;(2)假設存在,根據得到,表達出點坐標,得到,結合得到,從而求出答案.【小問1詳解】由離心率可知:,又,,解得:,,故橢圓C:,直線PA為:,令得:,所以;【小問2詳解】存在或,使得,理由如下:假設,使得,則,其中,直線:,令得:,則,,解得:,其中,故,所以,所以或19、(1)2;(2)存在,.【解析】(1)對函數求導,利用得的值;(2)討論和分離參數,構造新函數求解最值即可求解【詳解】解:(1),又由題意有(2)由(1)知,此時,由或,所以函數的單調減區(qū)間為和要恒成立,即①當時,,則要恒成立,令,再令,所以在內遞減,所以當時,,故,所以在內遞增,;②當時,lnx>0,則要恒成立,由①可知,當時,,所以內遞增,所以當時,,故,所以在內遞增,綜合①②可得,即存在常數滿足題意20、(1)證明見解析,;(2).【解析】(1)對遞推公式進行變形,結合等差數列的定義進行求解即可;(2)運用裂項相消法進行求解即可.【小問1詳解】因為,且,所以即,所以數列是公差為2的等差數列.又,所以即;【小問2詳解】由(1)得,所以.故.21、(1)證明見解析,;(2).【解析】(1)計算可得出,根據等比數列的定義可得出數列為等比數列,確定該數列的首項和公比,可求得數列的通項公式,進而可求得數列的通項公式;(2)求得,利用錯位相減法可求得.【小問1詳解】證明:對任意的,,則,則,因為,則,,,以此類推可知,對任意的,,所以,,所以,數列是等比數列,且該數列的首項為,公比為,所以,,則.【小問2詳解】解:,則,,下式上式得.22、(1)40;(2)a至少達到10.2萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和,此時該商品的每件定價為30元.【解析】(1)設每件定價為x元,可得提高價格后的銷售量,根據銷售的總收入不低于原收入,建立不等式,解不等式可得每
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【全程復習方略】2020年高考政治一輪課時提升作業(yè)(9)-必修1-第4單元-第9課(江蘇專供)
- 安徽省蚌埠市A層高中2024-2025學年高二上學期第二次聯(lián)考地理試卷(含答案)
- 【原創(chuàng)】2013-2020學年高二數學必修四導學案:3.2二倍角的三角
- 【紅對勾】2021高考生物(人教版)一輪課時作業(yè):必修3-第6章-生態(tài)環(huán)境的保護
- 《胸腔鏡術后護理》課件
- 2024-2025學年廣東省汕頭市金平區(qū)七年級(上)期末數學試卷
- 五年級數學(小數乘法)計算題專項練習及答案匯編
- 【全程復習方略】2021年高中化學選修三課時達標·效果檢測-第3章-晶體結構與性質3.4-
- 【優(yōu)化方案】2020-2021學年高一下學期數學(必修3)模塊綜合檢測
- 【志鴻優(yōu)化設計】2020高考地理(人教版)一輪教學案:第17章-第1講世界地理概況
- 期末測試模擬練習 (含答案) 江蘇省蘇州市2024-2025學年統(tǒng)編版語文七年級上冊
- 上海市徐匯區(qū)2024-2025學年高一語文下學期期末試題含解析
- 安全風險隱患舉報獎勵制度
- 江蘇省蘇州市2023-2024學年高三上學期期末考試 數學 含答案
- 線性代數知到智慧樹章節(jié)測試課后答案2024年秋貴州理工學院
- 建筑幕墻工程檢測知識考試題庫500題(含答案)
- 安防主管崗位招聘面試題及回答建議(某大型集團公司)2025年
- 消防疏散演練宣傳
- 2023-2024學年廣東省廣州市越秀區(qū)九年級(上)期末語文試卷
- 五年級數學下冊 課前預習單(人教版)
- 2024-2030年中國石油壓裂支撐劑行業(yè)供需現狀及投資可行性分析報告
評論
0/150
提交評論