廣東順德華僑中學2025屆高二上數(shù)學期末檢測模擬試題含解析_第1頁
廣東順德華僑中學2025屆高二上數(shù)學期末檢測模擬試題含解析_第2頁
廣東順德華僑中學2025屆高二上數(shù)學期末檢測模擬試題含解析_第3頁
廣東順德華僑中學2025屆高二上數(shù)學期末檢測模擬試題含解析_第4頁
廣東順德華僑中學2025屆高二上數(shù)學期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

廣東順德華僑中學2025屆高二上數(shù)學期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若空間中n個不同的點兩兩距離都相等,則正整數(shù)n的取值A.至多等于3 B.至多等于4C.等于5 D.大于52.如圖,已知多面體,其中是邊長為4的等邊三角形,四邊形是矩形,,平面平面,則點到平面的距離是()A. B.C. D.3.已知橢圓與直線交于A,B兩點,點為線段的中點,則a的值為()A. B.3C. D.4.函數(shù)圖象的一個對稱中心為()A. B.C. D.5.已知函數(shù),則滿足不等式的的取值范圍是()A. B.C. D.6.已知雙曲線上的點到的距離為15,則點到點的距離為()A.7 B.23C.5或25 D.7或237.函數(shù)的遞增區(qū)間是()A. B.和C. D.和8.已知分別是等差數(shù)列的前項和,且,則()A. B.C. D.9.圓與直線的位置關系是()A.相交 B.相切C.相離 D.不能確定10.在矩形中,,在該矩形內(nèi)任取一點M,則事件“”發(fā)生的概率為()A. B.C. D.11.已知定義在區(qū)間上的函數(shù),,若以上兩函數(shù)的圖像有公共點,且在公共點處切線相同,則m的值為()A.2 B.5C.1 D.012.已知函數(shù),則函數(shù)在點處的切線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的長軸在軸上,若焦距為4,則__________.14.長方體中,,已知點與三點共線且,則點到平面的距離為________15.在數(shù)列中,,,則數(shù)列的前6項和為___________.16.已知點,是橢圓內(nèi)的兩個點,M是橢圓上的動點,則的最大值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在等差數(shù)列中,,前10項和(1)求列的通項公式;(2)若數(shù)列是首項為1,公比為2的等比數(shù)列,求的前8項和18.(12分)已知函數(shù)(1)當時,求的單調(diào)區(qū)間;(2)當時,證明:存在最大值,且恒成立.19.(12分)已知定圓,過的一條動直線與圓相交于、兩點,(1)當與定直線垂直時,求出與的交點的坐標,并證明過圓心;(2)當時,求直線的方程20.(12分)將離心率相同的兩個橢圓如下放置,可以形成一個對稱性很強的幾何圖形,現(xiàn)已知.(1)若在第一象限內(nèi)公共點的橫坐標為1,求的標準方程;(2)假設一條斜率為正的直線與依次切于兩點,與軸正半軸交于點,試求的最大值及此時的標準方程.21.(12分)定義:設是空間的一個基底,若向量,則稱有序?qū)崝?shù)組為向量在基底下的坐標.已知是空間的單位正交基底,是空間的另一個基底,若向量在基底下的坐標為(1)求向量在基底下的坐標;(2)求向量在基底下的模22.(10分)已知是公差不為0的等差數(shù)列,,且成等比數(shù)列(1)求數(shù)列通項公式;(2)設,求數(shù)列的前項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先考慮平面上的情況:只有三個點的情況成立;再考慮空間里,只有四個點的情況成立,注意運用外接球和三角形三邊的關系,即可判斷解:考慮平面上,3個點兩兩距離相等,構(gòu)成等邊三角形,成立;4個點兩兩距離相等,由三角形的兩邊之和大于第三邊,則不成立;n大于4,也不成立;空間中,4個點兩兩距離相等,構(gòu)成一個正四面體,成立;若n>4,由于任三點不共線,當n=5時,考慮四個點構(gòu)成的正四面體,第五個點,與它們距離相等,必為正四面體的外接球的球心,由三角形的兩邊之和大于三邊,故不成立;同理n>5,不成立故選B點評:本題考查空間幾何體的特征,主要考查空間兩點的距離相等的情況,注意結(jié)合外接球和三角形的兩邊與第三邊的關系,屬于中檔題和易錯題2、C【解析】利用面面垂直性質(zhì)結(jié)合已知尋找兩兩垂直的三條直線建立空間直角坐標系,用向量法可解.【詳解】取的中點O,連接OB,過O在平面ACDE面內(nèi)作交DE于F∵平面平面ABC,平面ACDE平面ABC=AC,平面ACDE,∴平面ABC∴∵是邊長為4的等邊三角形,四邊形ACDE是矩形,∴以O為原點,OA,OB,OF分別為x,y,z軸,建立如圖所示空間直角坐標系則,,,設平面ABD的單位法向量,,由解得取,則∴點C到平面ABD的距離.故選:C3、A【解析】先聯(lián)立直線和橢圓的方程,結(jié)合中點公式及點可求a的值.【詳解】設,聯(lián)立,得,,因為點為線段的中點,所以,即,解得,因為,所以.故選:A.4、D【解析】要求函數(shù)圖象的一個對稱中心的坐標,關鍵是求函數(shù)時的的值;令,根據(jù)余弦函數(shù)圖象性質(zhì)可得,此時可求出,然后對進行取值,進而結(jié)合選項即可得到答案.【詳解】解:令,則解得,即,圖象的對稱中心為,令,即可得到圖象的一個對稱中心為故選:D【點睛】本題考查三角函數(shù)的對稱中心,正弦函數(shù)的對稱中心為,余弦函數(shù)的對稱中心為.5、A【解析】利用導數(shù)判斷函數(shù)的單調(diào)性,根據(jù)單調(diào)性即可解不等式【詳解】由則函數(shù)在上單調(diào)遞增又,所以,解得故選:A6、D【解析】根據(jù)雙曲線的定義知,,即可求解.【詳解】由題意,雙曲線,可得焦點坐標,根據(jù)雙曲線的定義知,,而,所以或故選:D【點睛】本題主要考查了雙曲線的定義及其應用,其中解答中熟記雙曲線的定義,列出方程是解答的關鍵,著重考查推理與運算能力,屬于基礎題.7、C【解析】求導后,由可解得結(jié)果.【詳解】因為的定義域為,,由,得,解得,所以的遞增區(qū)間為.故選:C.【點睛】本題考查了利用導數(shù)求函數(shù)的增區(qū)間,屬于基礎題.8、D【解析】利用及等差數(shù)列的性質(zhì)進行求解.【詳解】分別是等差數(shù)列的前項和,故,且,故,故選:D9、B【解析】用圓心到直線的距離與半徑的大小判斷【詳解】解:圓的圓心到直線的距離,等于圓的半徑,所以圓與直線相切,故選:B10、D【解析】利用幾何概型的概率公式,轉(zhuǎn)化為面積比直接求解.【詳解】以AB為直徑作圓,當點M在圓外時,.所以事件“”發(fā)生的概率為.故選:D11、C【解析】設兩曲線與公共點為,分別求得函數(shù)的導數(shù),根據(jù)兩函數(shù)的圖像有公共點,且在公共點處切線相同,列出等式,求得公共點的坐標,代入函數(shù),即可求解.【詳解】根據(jù)題意,設兩曲線與公共點為,其中,由,可得,則切線的斜率為,由,可得,則切線斜率為,因為兩函數(shù)的圖像有公共點,且在公共點處切線相同,所以,解得或(舍去),又由,即公共點的坐標為,將點代入,可得.故選:C.12、C【解析】依據(jù)導數(shù)幾何意義去求函數(shù)在點處的切線方程即可解決.【詳解】則,又則函數(shù)在點處的切線方程為,即故選:C二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】根據(jù)橢圓方程列方程,解得結(jié)果.【詳解】因為橢圓的長軸在軸上,焦距為4,所以故答案為:8【點睛】本題考查根據(jù)橢圓方程求參數(shù),考查基本分析求解能力,屬基礎題.14、【解析】利用坐標法,利用向量共線及垂直的坐標表示可求,即求.【詳解】如圖建立空間直角坐標系,則,因為點與三點共線且,,設,即,∴,∴,∴,即,∴點到平面的距離為.故答案為:.15、129【解析】依次寫出前6項,即可求得數(shù)列的前6項和.【詳解】數(shù)列中,,則,,,則數(shù)列的前6項和為故答案為:12916、##【解析】結(jié)合橢圓的定義求得正確答案.【詳解】依題意,橢圓方程為,所以,所以是橢圓的右焦點,設左焦點為,根據(jù)橢圓的定義可知,,所以的最大值為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)347.【解析】(1)設等差數(shù)列的公差為,解方程組即得解;(2)先求出,再分組求和得解.【詳解】解:(1)設等差數(shù)列的公差為,則解得所以(2)由題意,,所以所以的前8項和為18、(1)的單增區(qū)間為,;單減區(qū)間為,,;(2)證明見解析.【解析】(1)先求出函數(shù)的定義域,求出,由,結(jié)合函數(shù)的定義域可得出函數(shù)的單調(diào)區(qū)間.(2)當時,定義域R,求出,從而得出單調(diào)區(qū)間,由當時,,當時,,以及極值點與2的大小關系可得出當時,函數(shù)有最大值,然后再證明即可.【詳解】解:(1)定義域,可得且且,,可得且3無0無0減無減增無增減所以,的單增區(qū)間為,;單減區(qū)間為,,.(2)當時,定義域R因為,當時,,當時,,所以的最大值在時取得;由,即,得由,得,或由,得所以在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.當時,,且,由所以當時,函數(shù)有最大值.所以,因為,所以,設,則所以化為由,則,則,所以所以19、(1),證明見解析;(2)或.【解析】(1)根據(jù)題意可設直線的方程為,將點的坐標代入直線的方程,可求得的值,再將直線、的方程聯(lián)立,可得出這兩條直線的交點的坐標,將圓心的坐標代入直線的方程可證得結(jié)論成立;(2)利用勾股定理可求得圓心到直線的距離,對直線的斜率是否存在進行分類討論,設出直線方程,利用點到直線的距離公式求出參數(shù)的值,即可得出直線的方程.【小問1詳解】解:當直線與定直線垂直時,可設直線的方程為,將點的坐標代入直線的方程可得,則,此時,直線的方程為,聯(lián)立可得,即點,圓心的坐標為,因為,故直線過圓心.【小問2詳解】解:設圓心到直線的距離為,則.當直線的斜率不存在時,直線的方程為,此時圓心到直線的距離為,合乎題意;當直線的斜率存在時,可設直線的方程為,即,由題意可得,解得,此時直線的方程為,即.綜上所述,直線的方程為或.20、(1)(2);【解析】(1)設,將點代入得出的標準方程;(2)聯(lián)立與直線的方程,得出兩點的坐標,進而得出,再結(jié)合導數(shù)得出的最大值及此時的標準方程.【小問1詳解】由題意得:在第一象限的公共點為設,則有:的標準方程為:;【小問2詳解】設y=kx+m則①,則②,,,又,由①有代入①有,令,則令,在單調(diào)遞增,在單調(diào)遞減,此時,則,代入②得,綜上:的最大值2,此時.21、(1)(2)【解析】(1)根據(jù)向量在基底下的坐標為,得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論