分子生物學(xué)課件第五章-同源重組、位點(diǎn)特異性重組_第1頁
分子生物學(xué)課件第五章-同源重組、位點(diǎn)特異性重組_第2頁
分子生物學(xué)課件第五章-同源重組、位點(diǎn)特異性重組_第3頁
分子生物學(xué)課件第五章-同源重組、位點(diǎn)特異性重組_第4頁
分子生物學(xué)課件第五章-同源重組、位點(diǎn)特異性重組_第5頁
已閱讀5頁,還剩74頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第五章同源重組、位點(diǎn)特異性重組及轉(zhuǎn)座作用鄭偉娟2006DNARecombinationRolesTypesMechanismDNA重組(recombination)---是指發(fā)生在DNA分子內(nèi)或DNA分子之間核苷酸序列的交換、重排和轉(zhuǎn)移現(xiàn)象,是已有遺傳物質(zhì)的重新組合過程。RolesGeneratingnewgene/allelecombinations (crossingoverduringmeiosis)Generatingnewgenes(e.g.,IgGrearrangement)IntegrationofaspecificDNAelementDNArepair

PracticalUsesUsedtomapgenesonchromosomes (recombinationfrequencyproportionaltodistancebetweengenes)MakingtransgeniccellsandorganismsTypesHomologous-occursbetweensequencesthatarenearlyidentical(e.g.,duringmeiosis)Site-Specific-occursbetweensequenceswithalimitedstretchofsimilarity;involvesspecificsitesTransposition–DNAelementmovesfromonesitetoanother,usuallylittlesequencesimilarityinvolved發(fā)生在DNA的同源序列之間;同源重組包括細(xì)菌的接合(conjugation)、轉(zhuǎn)化(transformation)和轉(zhuǎn)導(dǎo)(transduction)以及真核細(xì)胞的在同源染色體之間發(fā)生的交換等;發(fā)生在DNA的特異位點(diǎn)之間;噬菌體DNA與宿主菌染色體DNA的整合,如λ噬菌體與大腸桿菌的位點(diǎn)特異性整合;位點(diǎn)特異性重組不依賴于序列的同源性;轉(zhuǎn)座作用與轉(zhuǎn)座子(Transposon)的復(fù)制有關(guān);7.1同源重組HomologousRecombinationExamplesofhomologousRecombinationFig.22.1TheHollidayModelThismodelofrecombinationwasfirstproposedbyRobinHollidayin1964andre-establishedbyDavidDresslerandHuntingtonPotterin1976whodemonstratedthattheproposedphysicalintermediatesexisted.AligntwohomologousDNAmoleculesNicktheDNAatthesameplaceonthetwomolecules

ExchangestrandsandligateTheintermediatethatisformediscalledaHollidayintermediateorHollidaystructure.

onemoleculeisnowrotatedthrough180owithrespecttotheotherResolvethestructure

Thebasic(simple)model

NoncrossoverrecombinationCrossoverrecombinationAmorerealisticmodel

Branchmigration.patchspliceNoncrossoverrecombinationCrossoverrecombinationFirstproposedbyMatthewMeselsonandCharlesRaddingin1975.Double-strandbreakinexactlycorrespondingpositionsisnotrequired.TheMeselson-RaddingModelFig.22.2patchNoncrossoverrecombinationCrossoverrecombinationMeselson

Radding

DSBRepairModelDSBisinitiatingeventCutduplexisdonorofgeneticinformationEnzymesarenotsequencespecificFirststableintermediatebetweentwochromatidsisathreestrandedstructureTheRecBCDPathwayActuallyrecombinationpathwayusedbyE.coli.AvariationofMeselson-Raddingmodel.BeginwithRecBCDproteincreatinganicknearthe3’endofchisite,χ,5’-GCTGGTGG-3’.Chisitesarefoundonavarageevery5000bpintheE.coligenome.RecBCDmultifunctionprotein:DNAhelicaseactivityssDNAanddsDNA

exonucleaseactivityssDNA

endonucleaseactivity1.RecBCDproteinnicksonestrandtothe3’-sideofthechisite.2.TheDNAhelicaseactivityofRecBCDthenunwindstheDNAthroughthechi-siteformingasingle-strandtail.3.

RecA

andSSBcoatthetail.4.RecApromotesinvasionofanotherDNAduplex,formingaD-loop.5.RecAhelpstheinvadingstrandscanforaregionofhomologyintherecipientDNAduplex.6.Theinvadingstrandbase-pairedwithahomologousregion,releasingSSBandRecA.7.RecBCDnicksthelooping-outstrand.RecAandSSBhelpsstrandexchange.Fig.22.5f-h8.ThenicksaresealedbyDNAligase,yieldingaHollidayjunction.9.Branchmigrationoccours,sponsoredbyRuvAandRuvB.10.RuvCresolvesthestructure.TheMainProteinsinvolved

inhomologousrecombinationinE.

coli

RecARecBCD

RuvARuvB

RuvC

RecA

TheRecAproteinisamultifunctionalpowerhouse!Ithasstrand-exchange,ATPaseandco-proteaseactivitiesallpackedintoacompact352amino-acid,38kDastructure.ItisrequiredforallrecombinationpathwaysinE.

coli.TheRecAproteinwillbindcooperativelytoassDNAmoleculewitheachmonomerofRecAbindingtoaspanof4-6nucleotides.Assemblyofthenucleoproteincomplexproceedsina5‘→3’direction.Thecomplexisfairlystable(half-lifeis30min)andistheactivespeciesthatwillpromotestrandexchange.RecAwillpromotestrandexchangebetweenDNAmoleculesaslongasthefollowingconditionsapplyOneofthetwomoleculesmusthaveassDNAregiontowhichRecAcanbind.

Thetwomoleculesmustsharearegionofhomologous(i.e.nearlyidentical)DNAsequence-aminimumof30-151bpisrequired.

Theremustbeafreeendwithinthisregionofhomologywhichcaninitiatethestrandexchange.

ThreestagesofparticipationofRecAinstrandexchangePresynapsis:

RecAandSSBcoatthessDNA;Synapsis:alignmentofcomplementarysequencesinthessDNAanddsDNA;Postsynapsis:strandexchange;*RecAbindspreferentiallytothesingle-strandDNA,andSSBacceleratesthisprocedurebyunwindsecondarystructureofthesingle-strandDNAparticipatinginrecombination.*SynapsiscanoccurefficientlywhenassDNAfindahomologousregion(atleast30-151bp)inadsDNAwiththepresenceofRecA.ThetwoalignedDNAstrandsaresidebyside,butnotinterwinded.*RecAandATPcollaboratetopromotestrandexchange.RecAhasATPaseactivity,whichhydrolysisATPtodissociateRecAfromsynapsisDNAandmakewayforstrandexchange.RecBCD

TherecB,recC&recDgenescodeforthethreesubunitsoftheRecBCDenzyme.RecBCDisalsoaversatileenzymewith:i)aDNA-dependentATPaseactivity;ii)aDNAnucleaseactivity;actsonbothssDNAanddsDNA,cleavesspecificallyatchisite.

iii)adsDNA

helicaseactivity;1.RecBCDproteinnicksonestrandtothe3’-sideofthechisite.2.TheDNAhelicaseactivityofRecBCDthenunwindstheDNAthroughthechi-siteformingasingle-strandtail.3.

RecAandSSBcoatthetail.4.RecApromotesinvasionofanotherDNAduplex,formingaD-loop.5.RecAhelpstheinvadingstrandscanforaregionofhomologyintherecipientDNAduplex.6.Theinvadingstrandbase-pairedwithahomologousregion,releasingSSBandRecA.7.RecBCDnicksthelooping-outstrand.RecAandSSBhelpsstrandexchange.*TheRecBCDcomplexcanfunctionasaDNA

exonuclease.Itwillbindtodouble-strandedbreaksinDNAanddegradebothstrandssimultaneously.*TheRecBCDcomplexalsohasendonucleaseactivity.

ItcannicknearthechisitewhenitencountersaChisequence.

ThentheRecDsubunitisreleasedandtheRecBCproteinsactasahelicasetounwindtheDNAinanATPdependentreaction.ThisgeneratesassDNAregionthatcanserve(alongwithRecA)toinitiatestrandexchangeandarecombinationreaction.TheRecBCD

helicaseactivitycanunwindDNAfasterthanitrewinds.ThusasittravelsalongaDNAmolecule,itcangeneratessDNAloops.RuvAandRuvBProteinsneededinbranchmigration;FormaDNAhelicasethatcatalyzesthebranchmigration;RuvAtetramerbindstoHJ(eachDNAhelixbetweensubunits);

RuvBisahexamerring,hashelicase&ATPaseactivity;2copiesofruvBbindattheHJ(toruvAand2oftheDNAhelices);*RuvBcandrivebranchmigrationbyitselfinhighconcentration,soithastheDNAhelicaseactivityandATPaseactivity.*RuvAholdstheHJinasquareplanarconformation,facilitatesbindingofRuvBandthuspromotebranchmigration.ruvBruvADirectionofbranchmigration,awayfromRuvB

RuvC:resolvaseBindstoHJasadimer

Endonucleasethatcuts2strandsofHJConsensussequence:(A/T)TT(G/C)-occursfrequentlyinE.coligenome -branchmigrationneededtoreachconsensussequence!Fig.22.31aRuvA,RuvBandRuvCworktogetherintheformofRuvABC-junctioncomplex,or“resolvasome”.RuvBcanbindtoRuvA,andRuvCcanbindtoRuvB.MeioticRecombinationTookplaceinmosteukaryotes;Sharemanycharacteristicsincommonwithhomologousrecombinationinbacteria;Theinitiatingeventisquitedifferentfromthatofbacteria;7.2位點(diǎn)特異性重組Site-specificRecombinationSite-specificrecombination

Asthenameimplies,thistypeofrecombinationinvolvestheexchangeofgeneticmaterialatveryspecificsitesonly.RequireslesssequencehomologybetweenrecombiningDNAsthandoeshomologousrecombination.Specializedproteinsareneededtorecognizethesesitesandtocatalyzetherecombinationreactionatthesesites.Thestepsandfeatures

StrandexchangeFormationofahollidayintermediateBranchmigrationResolutionbetweentwoDNAmolecularswithinoneDNAmolecularInvertedrepeatsDirectrepeatsExamplesofSite-SpecificRecombination

IntegrationofbacteriophagelambdaFlagellarantigenvariationinSalmonellatyphimurium

DiversityofIgGgenesSite-specificintegrationofl

attPbindsInt,IHFcomplexbindsattB

Intrecombinesthetwomoleculesusingthematch“O”sequence

Xisremoves“l(fā)ysogenic”phageinresponsetoenvironmentalstressMechanismofIntaction

ATPindependentprocess5’OHand3’phosphatesCovalentTyrattachment-akintotopoisomerases,Spo11FlagellarPhasevariation

AlsoinphageMu,P1andP7.7.3轉(zhuǎn)座作用DNAtranspositionDNAtransposition

BarbaraMcClintockspentmanyyearspatientlystudyingthebehaviorofunusualgeneticelementsinmaize.Sheconcludedthattheseelementswere,infact,mobile.Herwork,allthemoreamazingbecausemuchofitwascarriedoutbeforethestructureofDNAwassolved,waslargelyignoreduntilthemid1970swhensimilarelementswerediscoveredinbacteria.TransposableGenetic

ElementsinBacteria

InsertionSequencesSimpletransposonsCompositeTransposons

BacteriophageElements(Mu)InsertionSequencesInsertionSequencesorISelementsarethefirsttransposonsdiscoveredinbacteria.thesimplestmobileelementconsistofafairlyshort(700-1500bp)DNAsegmentflankedbya10-40bpinvertedrepeatsequence.Thesegmentcodesfortheprotein(transposase)thatcatalysesthetranspositionevent:*轉(zhuǎn)座發(fā)生后在轉(zhuǎn)座子兩側(cè)產(chǎn)生一對(duì)短的直接重復(fù)序列SimpletransposonssimilartoISelements.containDNAsegmentsflankedbyshortinvertedrepeatsequences.TheDNAsegments,however,usuallycodeforanumberofgeneproducts:transposase,resolvase

,antibioticresistancegenes:CompositeTransposons

FlankedbyanISelementateitherend.EachISelementisatypicalISelementalthoughonlyoneofthetwoelementstypicallyretainsafunctionaltransposaseactivity.TheISelementsmaybeinthesameorintheoppositeorientationwithrespecttooneanother.TheinterveningsegmentoftencarriesthegeneticdeterminantsforanumberofantibioticorothertoxinresistancesBacterio

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論