版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省鹽城市、南京市2025屆數(shù)學(xué)高一上期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知a=20.1,b=log43.6,c=log30.3,則()A.a>b>c B.b>a>cC.a>c>b D.c>a>b2.平面α截球O的球面所得圓的半徑為1,球心O到平面α的距離為,則此球的體積為A.π B.πC.4π D.π3.設(shè),則()A.13 B.12C.11 D.104.滿足的集合的個數(shù)為()A. B.C. D.5.設(shè)正實數(shù)滿足,則的最大值為()A. B.C. D.6.4張卡片上分別寫有數(shù)字1,2,3,4,從這4張卡片中隨機抽取2張,則取出的2張卡片的數(shù)字之積為偶數(shù)的概率為()A. B.C. D.7.函數(shù)的圖象可由函數(shù)的圖像()A.向左平移個單位得到 B.向右平移個單位得到C.向左平移個單位得到 D.向右平移個單位得到8.函數(shù)的最小正周期為A. B.C.2 D.49.已知函數(shù)的圖象如圖所示,則函數(shù)與在同一直角坐標(biāo)系中的圖象是A. B.C. D.10.若正數(shù)x,y滿足,則的最小值為()A.4 B.C.8 D.9二、填空題:本大題共6小題,每小題5分,共30分。11.在中,已知,則______.12.已知,則用表示______________;13.已知函數(shù)且(1)若函數(shù)在區(qū)間上恒有意義,求實數(shù)的取值范圍;(2)是否存在實數(shù),使得函數(shù)在區(qū)間上為增函數(shù),且最大值為?若存在,求出的值;若不存在,請說明理由14.已知正三棱柱的所有頂點都在球的球面上,且該正三棱柱的底面邊長為2,高為,則球的表面積為________15.已知f(x)=mx3-nx+1(m,n∈R),若f(-a)=3,則f(a)=______16.若函數(shù)(常數(shù)),對于任意兩個不同的、,當(dāng)、時,均有(為常數(shù),)成立,如果滿足條件的最小正整數(shù)為,則實數(shù)的取值范圍是___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓,點是直線上的一動點,過點作圓的切線,切點為.(1)當(dāng)切線的長度為時,求線段PM長度.(2)若的外接圓為圓,試問:當(dāng)在直線上運動時,圓是否過定點?若存在,求出所有的定點的坐標(biāo);若不存在,說明理由;(3)求線段長度的最小值18.已知角終邊上有一點,且.(1)求的值,并求與的值;(2)化簡并求的值.19.已知函數(shù)f(x)=2sin2(x+)-2cos(x-)-5a+2(1)設(shè)t=sinx+cosx,將函數(shù)f(x)表示為關(guān)于t的函數(shù)g(t),求g(t)的解析式;(2)對任意x∈[0,],不等式f(x)≥6-2a恒成立,求a的取值范圍20.“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟效益好的特點,研究表明:“活水圍網(wǎng)”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)不超過4尾/立方米時,的值為2千克/年:當(dāng)時,是的一次函數(shù),當(dāng)達(dá)到20尾/立方米時,因缺氧等原因,的值為0千克/年.(1)當(dāng)時,求關(guān)于的函數(shù)解析式;(2)當(dāng)養(yǎng)殖密度為多大時,魚的年生長量(單位:千克/立方米)可以達(dá)到最大?并求出最大值.21.已知函數(shù)(1)若成立,求x的取值范圍;(2)若定義在R上奇函數(shù)滿足,且當(dāng)時,,求在的解析式,并寫出在的單調(diào)區(qū)間(不必證明)(3)對于(2)中的,若關(guān)于x的不等式在R上恒成立,求實數(shù)t的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】直接判斷范圍,比較大小即可.【詳解】,,,故a>b>c.故選:A.2、B【解析】球半徑,所以球的體積為,選B.3、A【解析】將代入分段函數(shù)解析式即可求解.【詳解】,故選:A4、B【解析】列舉出符合條件的集合,即可得出答案.【詳解】滿足的集合有:、、.因此,滿足的集合的個數(shù)為.故選:B.【點睛】本題考查符合條件的集合個數(shù)的計算,只需列舉出符合條件的集合即可,考查分析問題和解決問題的能力,屬于基礎(chǔ)題.5、C【解析】根據(jù)基本不等式可求得最值.【詳解】由基本不等式可得,即,解得,當(dāng)且僅當(dāng),即,時,取等號,故選:C.6、D【解析】從4張卡片上分別寫有數(shù)字1,2,3,4中隨機抽取2張的基本事件有:12,13,14,23,24,34,一共6種,其中數(shù)字之積為偶數(shù)的有:12,14,23,24,34一共有5種,所以取出的2張卡片的數(shù)字之積為偶數(shù)的概率為,故選:D7、D【解析】異名函數(shù)圖像的平移先化同名,然后再根據(jù)“左加右減,上加下減”法則進(jìn)行平移.【詳解】變換到,需要向右平移個單位.故選:D【點睛】函數(shù)圖像平移異名化同名的公式:,.8、C【解析】分析:根據(jù)正切函數(shù)的周期求解即可詳解:由題意得函數(shù)的最小正周期為故選C點睛:本題考查函數(shù)的最小正周期,解答此類問題時根據(jù)公式求解即可9、C【解析】根據(jù)冪函數(shù)的圖象和性質(zhì),可得a∈(0,1),再由指數(shù)函數(shù)和對數(shù)函數(shù)的圖象和性質(zhì),可得答案【詳解】由已知中函數(shù)y=xa(a∈R)的圖象可知:a∈(0,1),故函數(shù)y=a﹣x為增函數(shù)與y=logax為減函數(shù),故選C【點睛】本題考查知識點是冪函數(shù)的圖象和性質(zhì),指數(shù)函數(shù)和對數(shù)函數(shù)的圖象和性質(zhì),難度不大,屬于基礎(chǔ)題10、C【解析】由已知可得,然后利用基本不等式可求得結(jié)果【詳解】解:因為正數(shù)x,y滿足,所以,當(dāng)且僅當(dāng),即時取等號,所以的最小值為8,故選:C【點睛】此題考查基本不等式應(yīng)用,利用了“1”的代換,屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、11【解析】由.12、【解析】根據(jù)對數(shù)的運算性質(zhì),對已知條件和目標(biāo)問題進(jìn)行化簡,即可求解.【詳解】因為,故可得,解得..故答案:.【點睛】本題考查對數(shù)的運算性質(zhì),屬基礎(chǔ)題.13、(1)(2)存在;(或)【解析】(1)由題意,得在上恒成立,參變分離得恒成立,再令新函數(shù),判斷函數(shù)的單調(diào)性,求解最大值,從而求出的取值范圍;(2)在(1)的條件下,討論與兩種情況,利用復(fù)合函數(shù)同增異減的性質(zhì)求解對應(yīng)的取值范圍,再利用最大值求解參數(shù),并判斷是否能取到.【小問1詳解】由題意,在上恒成立,即在恒成立,令,則在上恒成立,令所以函數(shù)在在上單調(diào)遞減,故則,即的取值范圍為.【小問2詳解】要使函數(shù)在區(qū)間上為增函數(shù),首先在區(qū)間上恒有意義,于是由(1)可得,①當(dāng)時,要使函數(shù)在區(qū)間上為增函數(shù),則函數(shù)在上恒正且為增函數(shù),故且,即,此時的最大值為即,滿足題意②當(dāng)時,要使函數(shù)在區(qū)間上為增函數(shù),則函數(shù)在上恒正且為減函數(shù),故且,即,此時的最大值為即,滿足題意綜上,存在(或)【點睛】一般關(guān)于不等式在給定區(qū)間上恒成立的問題都可轉(zhuǎn)化為最值問題,參變分離后得恒成立,等價于;恒成立,等價于成立.14、【解析】首先判斷正三棱柱外接球的球心,即上下底面正三角形中心連線的中點,然后構(gòu)造直角三角形求半徑,代入公式求解.【詳解】如圖:設(shè)和分別是上下底面等邊三角形的中心,由題意可知連線的中點就是三棱柱外接球的球心,連接,是等邊三角形,且,,,球的表面積.故答案為:【點睛】本題考查求幾何體外接球的表面積的問題,意在考查空間想象能力和轉(zhuǎn)化與化歸和計算能力,屬于基礎(chǔ)題型.15、【解析】直接證出函數(shù)奇偶性,再利用奇偶性得解【詳解】由題意得,所以,所以為奇函數(shù),所以,所以【點睛】本題是函數(shù)中的給值求值問題,一般都是利用函數(shù)的周期性和奇偶性把未知的值轉(zhuǎn)化到已知值上,若給點函數(shù)為非系非偶函數(shù)可試著構(gòu)造一個新函數(shù)為奇偶函數(shù)從而求解16、【解析】分析可知對任意的、且恒成立,且對任意的、且有解,進(jìn)而可得出關(guān)于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.詳解】,因為,由可得,由題意可得對任意的、且恒成立,且對任意的、且有解,即,即恒成立,或有解,因為、且,則,若恒成立,則,解得;若或有解,則或,解得或;因此,實數(shù)的取值范圍是.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)8(2)(3)【解析】(1)根據(jù)圓中切線長的性質(zhì)得到;(2)設(shè),經(jīng)過A,P,M三點的圓N以MP為直徑,圓N的方程為化簡求值即可;(3)(Ⅲ)求出點M到直線AB的距離,利用勾股定理,即可求線段AB長度的最小值.解析:(1)由題意知,圓M的半徑r=4,圓心M(0,6),設(shè)PA是圓的一條切線,(2)設(shè),經(jīng)過A,P,M三點的圓N以MP為直徑,圓心,半徑為得圓N的方程為即,有由,解得或圓過定點(3)圓N的方程,即①圓即②②-①得:圓M與圓N相交弦AB所在直線方程為:圓心M(0,6)到直線AB的距離弦長當(dāng)時,線段AB長度有最小值.點睛:這個題目考查的是直線和圓的位置關(guān)系,一般直線和圓的題很多情況下是利用數(shù)形結(jié)合來解決的,聯(lián)立的時候較少;再者在求圓上的點到直線或者定點的距離時,一般是轉(zhuǎn)化為圓心到直線或者圓心到定點的距離,再加減半徑,分別得到最大值和最小值;圓的問題經(jīng)常應(yīng)用的性質(zhì)有垂徑定理的應(yīng)用,切線長定理的應(yīng)用.18、(1),,(2)【解析】(1)直接利用三角函數(shù)的定義依次計算得到答案.(2)根據(jù)誘導(dǎo)公式化簡得到原式等于,計算得到答案.【小問1詳解】,,解得.故,.【小問2詳解】.19、(1),;(2)【解析】:(1)首先由兩角和的正弦公式可得,進(jìn)而即可求出的取值范圍;接下來對已知的函數(shù)利用進(jìn)行表示;對于(2),首先由的取值范圍,求出的取值范圍,再對已知進(jìn)行恒等變形可得在區(qū)間上恒成立,據(jù)此即可得到關(guān)于的不等式,解不等式即可求出的取值范圍.試題解析:(1),因為,所以,其中,即,.(2)由(1)知,當(dāng)時,,又在區(qū)間上單調(diào)遞增,所以,從而,要使不等式在區(qū)間上恒成立,只要,解得:.點晴:本題考查是求函數(shù)的解析式及不等式恒成立問題.(1)首先,可求出的取值范圍;接下來對已知的函數(shù)利用進(jìn)行表示;(2)先求二次函數(shù),再解不等式.20、(1);(2)當(dāng)養(yǎng)殖密度為10尾/立方米時,魚的年生長量可以達(dá)到最大為千克/立方米.【解析】(1)由題意:當(dāng)時,.當(dāng)時,設(shè),在,是減函數(shù),由已知得,能求出函數(shù)(2)依題意并由(1),,根據(jù)分段函數(shù)的性質(zhì)求出各段的最大值,再取兩者中較大的即可,由此能求出結(jié)果【詳解】解:(1)由題意:當(dāng)時,當(dāng)時,設(shè),顯然在,減函數(shù),由已知得,解得,,故函數(shù)(2)依題意并由(1)得,當(dāng)時,為增函數(shù),且當(dāng)時,,所以,當(dāng)時,的最大值為12.5當(dāng)養(yǎng)殖密度為10尾立方米時,魚年生長量可以達(dá)到最大,最大值約為12.5千克立方米【點睛】(1)很多實際問題中,變量間關(guān)系不能用一個關(guān)系式給出,這時就需要構(gòu)建分段函數(shù)模型.(2)求函數(shù)最值常利用基本不等式法、導(dǎo)數(shù)法、函數(shù)的單調(diào)性等方法.在求分段函數(shù)的最值時,應(yīng)先求每一段上的最值,然后比較得最大值、最小值21、(1)(2),在和單調(diào)遞減,在單調(diào)遞增(3)【解析】(1)把題給不等式轉(zhuǎn)化成對數(shù)不等式,解之即可;(2)利用題給條件分別去求和的函數(shù)解析式,再綜合寫成分段函數(shù)即可解決;(3)分類討論把題給抽象不
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇省鹽城市亭湖新區(qū)初級中學(xué) 蘇科版物理八年級上冊 八年級第一學(xué)期期末質(zhì)量檢測物理(含答案)
- 河北省張家口市橋西區(qū)2024-2025學(xué)年八年級上學(xué)期1月期末生物試卷(含答案)
- 5合同評審控制程序
- 地理-山東省2025年1月濟南市高三期末學(xué)習(xí)質(zhì)量檢測濟南期末試題和答案
- 2023年南京中醫(yī)藥大學(xué)中醫(yī)內(nèi)科學(xué)題庫
- 2024認(rèn)定實際施工人法律風(fēng)險防范與合同完善服務(wù)合同3篇
- 2025年度工業(yè)互聯(lián)網(wǎng)安全電子交易SET合作協(xié)議3篇
- 2024高端設(shè)備制造銷售合同
- 2024年心理健康教育主題班會教案13篇
- 2024蔬菜大棚溫室租賃與智能控制系統(tǒng)供應(yīng)合同3篇
- 光伏項目居間服務(wù)合同協(xié)議書
- Unit 3 Family Matters Developing Ideas Writing about a Family Memory 教學(xué)設(shè)計-2024-2025學(xué)年高一上學(xué)期英語外研版(2019)必修第一冊
- 工程量清單及招標(biāo)控制價編制工作方案
- 2024旅行社免責(zé)協(xié)議書模板范本
- 普工附有答案
- 《烏魯木齊市國土空間總體規(guī)劃(2021-2035年)》
- 2024年中國租賃業(yè)調(diào)查報告-畢馬威-202407
- 中俄東線天然氣管道工程(永清-上海)環(huán)境影響報告書
- TB 10010-2008 鐵路給水排水設(shè)計規(guī)范
- 縣公路局安全生產(chǎn)培訓(xùn)
- 建筑史智慧樹知到期末考試答案2024年
評論
0/150
提交評論