版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山西省長治市上黨聯(lián)盟2025屆高二數(shù)學第一學期期末質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列是以1為首項,2為公差的等差數(shù)列,是以1為首項,2為公比的等比數(shù)列,設,,則當時,n的最大值是()A.8 B.9C.10 D.112.雙曲線的左右焦點分別是,,直線與雙曲線在第一象限的交點為,在軸上的投影恰好是,則雙曲線的離心率是()A. B.C. D.3.在正項等比數(shù)列中,,,則()A27 B.64C.81 D.2564.已知隨機變量服從正態(tài)分布,若,則()A.0.2 B.0.24C.0.28 D.0.325.函數(shù)在上的極大值點為()A. B.C. D.6.如圖,過拋物線的焦點的直線與拋物線交于兩點,與其準線交于點(點位于之間)且于點且,則等于()A. B.C. D.7.若,則下列等式一定成立的是()A. B.C. D.8.已知集合,,若,則=()A.{1,2,3} B.{1,2,3,4}C.{0,1,2} D.{0,1,2,3}9.在平行六面體ABCD﹣A1B1C1D1中,AC與BD的交點為M,設=,=,=,則=()A.++ B.+C.++ D.+10.若在1和16中間插入3個數(shù),使這5個數(shù)成等比數(shù)列,則公比為()A. B.2C. D.411.函數(shù)單調(diào)減區(qū)間是()A. B.C.和 D.12.若橢圓的短軸為,一個焦點為,且為等邊三角形的橢圓的離心率是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.等差數(shù)列的前項和為,已知,則__.14.如圖,E,F(xiàn)分別是三棱錐的棱AD,BC的中點,,,,則異面直線AB與EF所成的角為______.15.直線恒過定點,則定點坐標為________16.設,分別是橢圓C:的左、右焦點,點M為橢圓C上一點且在第一象限,若為等腰三角形,則M的坐標為___________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線,半徑為的圓與相切,圓心在軸上且在直線的右上方.(1)求圓的方程;(2)過點的直線與圓交于兩點在軸上方),問在軸正半軸上是否存在定點,使得軸平分?若存在,請求出點的坐標;若不存在,請說明理由.18.(12分)如圖所示等腰梯形ABCD中,,,,點E為CD的中點,沿AE將折起,使得點D到達F位置.(1)當時,求證:平面AFC;(2)當時,求二面角的余弦值.19.(12分)已知函數(shù).(1)若在上單調(diào)遞增,求的取值范圍;(2)若在上存在極值點,證明:.20.(12分)已知橢圓:過點,且離心率(Ⅰ)求橢圓的標準方程;(Ⅱ)設的左、右焦點分別為,,過點作直線與橢圓交于,兩點,,求的面積21.(12分)如圖,在直三棱柱中,平面?zhèn)让妫?(1)求證:;(2)若直線與平面所成的角為,請問在線段上是否存在點,使得二面角的大小為,若存在請求出的位置,不存在請說明理由.22.(10分)在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,點D是BC的中點;(I)求異面直線A1B,AC1所成角的余弦值;(II)求直線AB1與平面C1AD所成角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先求出數(shù)列和的通項公式,然后利用分組求和求出,再對進行賦值即可求解.【詳解】解:因為數(shù)列是以1為首項,2為公差的等差數(shù)列所以因為是以1為首項,2為公比的等比數(shù)列所以由得:當時,即當時,當時,所以n的最大值是.故選:B.【點睛】關(guān)鍵點睛:本題的關(guān)鍵是利用分組求和求出,再通過賦值法即可求出使不等式成立的的最大值.2、D【解析】根據(jù)題意的到,,代入到雙曲線方程,解得,即,則,即,即,求解方程即可得到結(jié)果.【詳解】設原點為,∵直線與雙曲線在第一象限的交點在軸上的投影恰好是,∴,且,∴,將代入到雙曲線方程,可得,解得,即,則,即,即,解得(舍負),故.故選:D.3、C【解析】根據(jù)等比數(shù)列的通項公式求出公比,進而求得答案.【詳解】設的公比為,則(負值舍去),所以.故選:C.4、C【解析】依據(jù)正態(tài)曲線的對稱性即可求得【詳解】由隨機變量服從正態(tài)分布,可知正態(tài)曲線的對稱軸為直線由,可得則,故故選:C5、C【解析】求出函數(shù)的導數(shù),利用導數(shù)確定函數(shù)的單調(diào)性,即可求出函數(shù)的極大值點【詳解】,∴當時,,單調(diào)遞減,當時,,單調(diào)遞增,當時,,單調(diào)遞減,∴函數(shù)在的極大值點為故選:C6、B【解析】由題可得,然后結(jié)合條件可得,即求.【詳解】設于點,準線交軸于點G,則,又,∴,又于點且,∴BE∥AD,∴,即,∴,∴等于.故選:B.7、D【解析】利用復數(shù)除法運算和復數(shù)相等可用表示出,進而得到之間關(guān)系.【詳解】,,,則.故選:D.8、D【解析】根據(jù)題意,解不等式求出集合,由,得,進而求出,從而可求出集合,最后根據(jù)并集的運算即可得出答案.【詳解】解:由題可知,,而,即,解得:,又由于,得,因為,則,所以,解得:,所以,所以.故選:D.【點睛】本題考查集合的交集的定義和并集運算,屬于基礎題.9、B【解析】利用向量三角形法則、平行四邊形法則、向量共線定理即可得出【詳解】如圖所示,∵=+,又=,=-,=,∴=+,故選:B10、A【解析】根據(jù)等比數(shù)列的通項得:,從而可求出.【詳解】解:成等比數(shù)列,∴根據(jù)等比數(shù)列的通項得:,,故選:A.11、B【解析】根據(jù)函數(shù)求導,然后由求解.【詳解】因為函數(shù),所以,由,解得,所以函數(shù)的單調(diào)遞減區(qū)間是,故選:B12、B【解析】因為為等邊三角形,所以.考點:橢圓的幾何性質(zhì).點評:橢圓圖形當中有一個特征三角形,它的三邊分別為a,b,c.因而可據(jù)此求出離心率.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)等差數(shù)列的求和公式和等差數(shù)列的性質(zhì)即可求出.【詳解】因為等差數(shù)列的前項和為,,則,故答案為:33.【點睛】本題考查了等差數(shù)列的求和公式和等差數(shù)列的性質(zhì),屬于基礎題.14、【解析】取的中點,連結(jié),由分別為的中點,可得(或其補角)為異面直線AB與EF所成的角,在求解即可.【詳解】取的中點,連結(jié)由分別為的中點,則所以(或其補角)為異面直線AB與EF所成的角由分別是的中點,則,又在中,,則所以,又,所以在直角中,故答案為:15、【解析】解方程組可求得定點坐標.【詳解】直線方程可化為,由,可得.故直線恒過定點.故答案為:.16、【解析】先計算出,所以,利用余弦定理求出,即可求出,即得到M的橫坐標為,代入橢圓C:求出.【詳解】橢圓C:,所以.因為M在橢圓上,.因為M在第一象限,故.為等腰三角形,則,所以,由余弦定理可得.過M作MA⊥x軸于A,則所以,即M的橫坐標為.因為M為橢圓C:上一點且在第一象限,所以,解得:所以M的坐標為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,.【解析】(1)設出圓心,根據(jù)圓心到直線距離等于半徑列方程求出的值可得圓心坐標,進而可得圓的方程;(2)由題可設直線的方程為,與圓的方程聯(lián)立,利用韋達定理及可得,即得.【小問1詳解】由已知可設圓心,則,解得或(舍).所以圓.【小問2詳解】由題可設直線的方程為,由,得到:顯然成立,所以.①若軸平分,則,所以:,整理得:,將①代入整理得對任意的恒成立,則.∴存在點為時,使得軸平分.18、(1)證明見解析(2)【解析】(1)結(jié)合線面垂直的判定定理來證得結(jié)論成立.(2)建立空間直角坐標系,利用向量法來求得二面角的大小.【小問1詳解】設,由于四邊形是等腰梯形,是的中點,,所以,所以四邊形是平行四邊形,由于,所以四邊形是菱形,所以,由于,是的中點,所以,由于,所以平面.【小問2詳解】由于,所以三角形、三角形、三角形是等邊三角形,設是的中點,設,則,所以,所以,由于兩兩垂直.以為空間坐標原點建立如圖所示空間直角坐標系,,,平面的法向量為,設平面法向量為,則,故可設,由圖可知,二面角為鈍角,設二面角為,,則.19、(1)(2)證明見解析【解析】(1)由題得,在,上為單調(diào)遞增的函數(shù),在,上恒成立,分類討論,再次利用導數(shù)研究函數(shù)的最值即可;(2)由(1)可知,在存在極值點,則且,求得,再兩次求導即可得結(jié)論.【小問1詳解】由題得,在,上為單調(diào)遞增的函數(shù),在,上恒成立,設,當時,由,得,在,上為增函數(shù),則,在,上恒成立,滿足命題,當時,由,得,在上為減函數(shù),,時,,即,不滿足恒成立,不成立,綜上:的取值范圍為.小問2詳解】證明:由(1)可知,在存在極值點,則且即:要證只需證即證又由(1)可知在上為增函數(shù),且,成立.要證只需證即證:設則即在上增函數(shù)在為增函數(shù)成立.綜上,成立.20、(Ⅰ);(Ⅱ).【解析】(Ⅰ)根據(jù)已知點,離心率以及列方程組,解方程組可得的值即可求解;(Ⅱ)設,,直線的方程為,聯(lián)立直線與橢圓方程消去,可得,,利用向量數(shù)量積的坐標表示列方程可得的值,計算,利用面積公式計算即可求解.【詳解】(Ⅰ)將代入橢圓方程可得,即①因為離心率,即,②由①②解得,,故橢圓的標準方程為(Ⅱ)由題意可得,,設直線的方程為將直線的方程代入中,得,設,,則,所以,,所以,由,解得,所以,,因此21、(1)證明見解析(2)存在,點E為線段中點【解析】(1)通過作輔助線結(jié)合面面垂直的性質(zhì)證明側(cè)面,從而證明結(jié)論;(2)建立空間直角坐標系,求出相關(guān)點的坐標,再求相關(guān)的向量坐標,求平面的法向量,利用向量的夾角公式求得答案.【小問1詳解】證明:連接交于點,因,則由平面?zhèn)让妫移矫鎮(zhèn)让?,得平面,又平面,所以三棱柱是直三棱柱,則底面ABC,所以.又,從而側(cè)面,又側(cè)面,故.【小問2詳解】由(1).平面,則直線與平面所成的角,所以,又,所以假設在線段上是否存在一點E,使得二面角的大小為,由是直三棱柱,所以以點A為原點,以AC、所在直線分別為x,z軸,以過A點和AC垂直的直線為y軸,建立空間直角坐標系,如圖所示,則,且設,,得所以,設平面的一個法向量,由,得:,取,由(1)知平面,所以平面的一個法向量,所以,解得,∴點E為線段中點時,二面角的大小為.22、(I)(II)【解析】(I)以,,為x,y,z軸建立空間直角坐標系A﹣xyz,可得和的坐標,可得cos<,>,可得答案;(II)由(I)知,=(2,0,﹣4),=(1,1,0),設平面C1AD的法向量為=(x,y,z),由可得=(1,﹣1,),設直線AB1與平面C1AD所成的角為θ,則sinθ=|cos<,>|=,進而可得答案解:(I)以,,x,y,z軸建立空間直角坐標系A﹣xyz,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版高科技產(chǎn)品出口許可與合同履行協(xié)議3篇
- 二零二五版國際貿(mào)易合同擔保法風險管理合同3篇
- 碎石加工設備2025年度保險合同2篇
- 二零二五版企業(yè)員工勞務派遣與員工福利保障合同3篇
- 二零二五年度糧食儲備與農(nóng)業(yè)產(chǎn)業(yè)化合作合同3篇
- 二零二五年度高層綜合樓公共收益分配管理合同3篇
- 二零二五年度校車運營服務與兒童座椅安全檢測合同3篇
- 二零二五版帶儲藏室裝修包售二手房合同范本3篇
- 二零二五年房地產(chǎn)合作開發(fā)與股權(quán)讓渡綜合合同2篇
- 二零二五年度花木種植與生態(tài)農(nóng)業(yè)園區(qū)建設合同3篇
- 飛行原理(第二版) 課件 第4章 飛機的平衡、穩(wěn)定性和操縱性
- 暨南大學珠海校區(qū)財務辦招考財務工作人員易考易錯模擬試題(共500題)試卷后附參考答案
- 羊水少治療護理查房
- 中華人民共和國保守國家秘密法實施條例培訓課件
- 管道坡口技術(shù)培訓
- OQC培訓資料教學課件
- 2024年8月CCAA國家注冊審核員OHSMS職業(yè)健康安全管理體系基礎知識考試題目含解析
- 體育賽事組織與實施操作手冊
- 2024年浙江省公務員考試結(jié)構(gòu)化面試真題試題試卷答案解析
- 2023年航空公司招聘:機場安檢員基礎知識試題(附答案)
- 皮膚儲存新技術(shù)及臨床應用
評論
0/150
提交評論