版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省衡陽縣第四中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等差數(shù)列中,,則前項的和()A. B.C. D.2.已知方程表示焦點在軸上的橢圓,則實數(shù)的取值范圍是()A. B.C. D.3.設(shè)滿足則的最大值為A. B.2C.4 D.164.已知雙曲線的焦點為,,其漸近線上橫坐標(biāo)為的點滿足,則()A. B.C.2 D.45.已知圓,直線,直線l被圓O截得的弦長最短為()A. B.C.8 D.96.已知平面法向量為,,則直線與平面的位置關(guān)系為A. B.C.與相交但不垂直 D.7.若(為虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限8.過原點O作兩條相互垂直的直線分別與橢圓交于A、C與B、D,則四邊形ABCD面積最小值為()A B.C. D.9.已知直線過點,當(dāng)直線與圓有兩個不同的交點時,其斜率的取值范圍是()A. B.C. D.10.已知拋物線:,焦點為,若過的直線交拋物線于、兩點,、到拋物線準(zhǔn)線的距離分別為3、7,則長為A.3 B.4C.7 D.1011.某商場有四類食品,其中糧食類、植物油類、動物性食品類以及果蔬類分別有40種、10種、30種、20種,現(xiàn)從中抽取一個容量為20的樣本進行食品安全檢測.若采用分層抽樣的方法抽取樣本,則抽取的植物油類與果蔬類食品種數(shù)之和是()A.4 B.5C.6 D.712.若,則()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.光線從橢圓的一個焦點發(fā)出,被橢圓反射后會經(jīng)過橢圓的另一個焦點;光線從雙曲線的一個焦點發(fā)出,被雙曲線反射后的反射光線等效于從另一個焦點射出.如圖,一個光學(xué)裝置由有公共焦點的橢圓與雙曲線構(gòu)成,現(xiàn)一光線從左焦點發(fā)出,依次經(jīng)與反射,又回到了點,歷時秒;若將裝置中的去掉,此光線從點發(fā)出,經(jīng)兩次反射后又回到了點,歷時秒;若,則與的離心率之比為________14.已知是首項為,公差為1的等差數(shù)列,數(shù)列滿足,若對任意的,都有成立,則實數(shù)的取值范圍是________15.在正方體中,則直線與平面所成角的正弦值為__________16.橢圓C:的左、右焦點分別為,,點A在橢圓上,,直線交橢圓于點B,,則橢圓的離心率為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在公差為的等差數(shù)列中,已知,且成等比數(shù)列.(Ⅰ)求;(Ⅱ)若,求.18.(12分)已知橢圓的離心率,左、右焦點分別為、,點在橢圓上,過的直線交橢圓于、兩點.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求的面積的最大值.19.(12分)已知橢圓C:的離心率為,,是橢圓的左、右焦點,過且垂直于x軸的直線被橢圓C截得的線段長為1(1)求橢圓C的方程;(2)過點的直線l與橢圓C交于A,B兩點,求(O為坐標(biāo)原點)的面積的最大值20.(12分)已知冪函數(shù)在上單調(diào)遞減,函數(shù)的定義域為集合A(1)求m的值;(2)當(dāng)時,的值域為集合B,若是成立的充分不必要條件,求實數(shù)的取值范圍21.(12分)已知數(shù)列的前n項和為,且滿足(1)證明數(shù)列是等比數(shù)列;(2)若數(shù)列滿足,證明數(shù)列的前n項和22.(10分)已知集合,,.(1)求;(2)若“”是“”的必要不充分條件,求實數(shù)a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用等差數(shù)列下標(biāo)和性質(zhì)可求得,根據(jù)等差數(shù)列求和公式可求得結(jié)果.【詳解】數(shù)列為等差數(shù)列,,解得:;.故選:D.2、D【解析】根據(jù)已知條件可得出關(guān)于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【詳解】因為方程表示焦點在軸上的橢圓,則,解得.故選:D.3、C【解析】可行域如圖,則直線過點A(0,1)取最大值2,則的最大值為4,選C.點睛:線性規(guī)劃的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想.需要注意的是:一,準(zhǔn)確無誤地作出可行域;二,畫目標(biāo)函數(shù)所對應(yīng)的直線時,要注意與約束條件中的直線的斜率進行比較,避免出錯;三,一般情況下,目標(biāo)函數(shù)的最大或最小值會在可行域的端點或邊界上取得.4、B【解析】由題意可設(shè),則,再由,可得,從而可求出的值【詳解】解:雙曲線的漸近線方程為,故設(shè),設(shè),則,因為,所以,即,所以,因為,所以,因為,所以,故選:B5、B【解析】先求得直線過定點,再根據(jù)當(dāng)點與圓心連線垂直于直線l時,被圓O截得的弦長最短求解.【詳解】因為直線方程,即為,所以直線過定點,因為點在圓的內(nèi)部,當(dāng)點與圓心連線垂直于直線l時,被圓O截得的弦長最短,點與圓心(0,0)的距離為,此時,最短弦長為,故選:B6、A【解析】.本題選擇A選項.7、A【解析】根據(jù)復(fù)數(shù)運算法則求出z=a+bi形式,根據(jù)復(fù)數(shù)的幾何意義即可求解.【詳解】,z對應(yīng)的點在第一象限.故選:A8、A【解析】直線AC、BD與坐標(biāo)軸重合時求出四邊形面積,與坐標(biāo)軸不重合求出四邊形ABCD面積最小值,再比較大小即可作答.【詳解】因四邊形ABCD的兩條對角線互相垂直,由橢圓性質(zhì)知,四邊形ABCD的四個頂點為橢圓頂點時,而,四邊形ABCD的面積,當(dāng)直線AC斜率存在且不0時,設(shè)其方程為,由消去y得:,設(shè),則,,直線BD方程為,同理得:,則有,當(dāng)且僅當(dāng),即或時取“=”,而,所以四邊形ABCD面積最小值為.故選:A9、A【解析】設(shè)直線方程,利用圓與直線的關(guān)系,確定圓心到直線的距離小于半徑,即可求得斜率范圍.【詳解】如下圖:設(shè)直線l的方程為即圓心為,半徑是1又直線與圓有兩個不同的交點故選:A10、D【解析】利用拋物線的定義,把的長轉(zhuǎn)化為點到準(zhǔn)線的距離的和得解【詳解】解:拋物線:,焦點為,過的直線交拋物線于、兩點,、到拋物線準(zhǔn)線的距離分別為3、7,則故選D【點睛】本題考查拋物線定義的應(yīng)用,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.11、C【解析】按照分層抽樣的定義進行抽取.【詳解】按照分層抽樣的定義有,糧食類:植物油類:動物性食品類:果蔬類=4:1:3:2,抽20個出來,則糧食類8個,植物油類2個,動物性食品類6個,果蔬類4個,則抽取的植物油類與果蔬類食品種數(shù)之和是6個.故選:C.12、D【解析】直接利用向量的坐標(biāo)運算求解即可【詳解】因為,所以,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、##0.75【解析】根據(jù)橢圓和雙曲線定義用長半軸長和實半軸長表示出撤掉裝置前后的路程,然后由已知可解.【詳解】記橢圓的長半軸長為,雙曲線的實半軸長為,由橢圓和雙曲線的定義有:,得,即,又由橢圓定義知,,因為,所以,即所以.故答案為:14、【解析】先求得,再得出,對于任意的,都有成立,說明是中的最小項【詳解】由題意,∴,易知函數(shù)在和上都是減函數(shù),且時,,即,時,,,由題意對于任意的,都有成立,則是最小項,∴,解得,故答案為:15、【解析】建立空間直角坐標(biāo)系,利用空間向量夾角公式進行求解即可【詳解】建立如圖所示的空間直角坐標(biāo)系,設(shè)該正方體的棱長為1,所以,,,,因此,,,設(shè)平面的法向量為:,所以有:,令,所以,因此,設(shè)與的夾角為,直線與平面所成角為,所以有,故答案為:16、(也可以)【解析】可以利用條件三角形為等腰直角三角形,設(shè)出邊長,找到邊長與之間等量關(guān)系,然后把等量關(guān)系帶入到勾股定理表達的等式中,即可求解離心率.【詳解】由題意知三角形為等腰直角三角形,設(shè),則,解得,,在三角形中,由勾股定理得,所以,故答案為:(也可以)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)或(Ⅱ)【解析】(Ⅰ)由題意求得數(shù)列的公差后可得通項公式.(Ⅱ)結(jié)合條件可得,分和兩種情況去掉中的絕對值后,利用數(shù)列的前n項和公式求解試題解析:(Ⅰ)∵成等比數(shù)列,∴,整理得,解得或,當(dāng)時,;當(dāng)時,所以或(Ⅱ)設(shè)數(shù)列前項和為,∵,∴,當(dāng)時,,∴;當(dāng)時,綜上18、(1)(2)【解析】(1)利用橢圓的離心率、點在橢圓上以及得到的方程組,進而得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)出直線方程,聯(lián)立直線和橢圓方程,得到關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系和三角形的面積公式得到三角形的面積,再利用基本不等式求其最值.【小問1詳解】解:由題可得,且,將點代入橢圓方程,得,解得,,即橢圓方程為;【小問2詳解】解:由(1)可得,,設(shè):,聯(lián)立,消去,得,設(shè),,則,則所以,當(dāng)且僅當(dāng),即時取等號,故的面積的最大值為.19、(1);(2)1.【解析】(1)根據(jù)給定條件結(jié)合列式計算得解.(2)設(shè)出直線l的方程,與橢圓C的方程聯(lián)立,借助韋達定理結(jié)合均值不等式計算作答.【小問1詳解】橢圓C的半焦距為c,離心率,因過且垂直于x軸的直線被橢圓C截得的弦長為1,將代入橢圓C方程得:,即,則有,解得,所以橢圓C的方程為.【小問2詳解】由(1)知,,依題意,直線l的斜率不為0,則設(shè)直線l的方程為,,,由消去x并整理得:,,,的面積,,設(shè),,,,當(dāng)且僅當(dāng),時取得“=”,于是得,,所以面積的最大值為1.【點睛】思路點睛:解決直線與橢圓的綜合問題時,要注意:(1)注意觀察應(yīng)用題設(shè)中的每一個條件,明確確定直線、橢圓的條件;(2)強化有關(guān)直線與橢圓聯(lián)立得出一元二次方程后的運算能力,重視根與系數(shù)之間的關(guān)系、弦長、斜率、三角形的面積等問題20、(1)(2)【解析】(1)根據(jù)冪函數(shù)的定義和單調(diào)性求解;(2)利用根式函數(shù)的定義域和值域求得集合A,B,再由是A的真子集求解.【小問1詳解】解:因為冪函數(shù)在上單調(diào)遞減,所以,解得.【小問2詳解】由,得,解得,所以,當(dāng)時的值域為,所以,因為是成立的充分不必要條件,所以是A的真子集,,解得.21、(1)證明見解析(2)證明見解析【解析】(1)可根據(jù)已知的與的遞推關(guān)系,利用求解出數(shù)列的首項,然后當(dāng)時,遞推做差,利用消掉,即可得到與之間的關(guān)系,從而完成證明;(2)利用第(1)問求解出的數(shù)列的通項公式,帶入到中,再使用錯位相減法進行求和,根據(jù)最后計算的結(jié)果與比較即可完成證明.【小問1詳解】由題意得,當(dāng)時,,∴,當(dāng)時,,∴,∵,∴,于是有,故數(shù)列是以3為首項,3為公比的等比數(shù)列.得證.【小問2詳解】由(1)可知,∴,,①,②,②?①得:,∴,∵,故,∴得證.22、(1).(2).【解析】分析:(1)先
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 某某市科技企業(yè)孵化器建設(shè)項目可行性研究報告
- 2025陜西省建筑安全員《A證》考試題庫
- 2025青海建筑安全員A證考試題庫附答案
- 團隊管理經(jīng)驗分享培訓(xùn)課件
- 世界觀與方法論的關(guān)系
- JJF(桂)-稱重容罐校準(zhǔn)規(guī)范試驗報告
- 三角形王國 小班數(shù)學(xué)
- 《惡性青光眼》課件
- 解題方法突破 分類討論課件-名師微課堂
- 《基因變異疾病》課件
- JJF 1636-2017交流電阻箱校準(zhǔn)規(guī)范
- GB/T 40537-2021航天產(chǎn)品裕度設(shè)計指南
- 政協(xié)個人簡歷模板12篇
- 木工工具及使用方法課件
- 節(jié)能減排獎懲制度(5篇)
- 部編六年級語文上冊 讀音易錯字
- COPD(慢性阻塞性肺病)診治指南(2023年中文版)
- 氣相色譜儀作業(yè)指導(dǎo)書
- ?中醫(yī)院醫(yī)院等級復(fù)評實施方案
- 跨高速橋梁施工保通專項方案
- 鐵路貨車主要輪對型式和基本尺寸
評論
0/150
提交評論