2025屆廣西桂林陽(yáng)朔中學(xué)數(shù)學(xué)高二上期末綜合測(cè)試試題含解析_第1頁(yè)
2025屆廣西桂林陽(yáng)朔中學(xué)數(shù)學(xué)高二上期末綜合測(cè)試試題含解析_第2頁(yè)
2025屆廣西桂林陽(yáng)朔中學(xué)數(shù)學(xué)高二上期末綜合測(cè)試試題含解析_第3頁(yè)
2025屆廣西桂林陽(yáng)朔中學(xué)數(shù)學(xué)高二上期末綜合測(cè)試試題含解析_第4頁(yè)
2025屆廣西桂林陽(yáng)朔中學(xué)數(shù)學(xué)高二上期末綜合測(cè)試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆廣西桂林陽(yáng)朔中學(xué)數(shù)學(xué)高二上期末綜合測(cè)試試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知實(shí)數(shù),滿(mǎn)足約束條件則的最大值為()A.10 B.8C.4 D.202.函數(shù)的圖象大致為()A B.C D.3.傾斜角為45°,在y軸上的截距為2022的直線(xiàn)方程是()A. B.C. D.4.已知,那么函數(shù)在x=π處的瞬時(shí)變化率為()A. B.0C. D.5.若直線(xiàn)l的傾斜角是鈍角,則l的方程可能是()A. B.C. D.6.已知點(diǎn)是點(diǎn)在坐標(biāo)平面內(nèi)的射影,則點(diǎn)的坐標(biāo)為()A. B.C. D.7.若不等式組表示的區(qū)域?yàn)?,不等式表示的區(qū)域?yàn)?,向區(qū)域均勻隨機(jī)撒顆芝麻,則落在區(qū)域中的芝麻數(shù)約為()A. B.C. D.8.已知,是橢圓C的兩個(gè)焦點(diǎn),P是C上的一點(diǎn),若以為直徑的圓過(guò)點(diǎn)P,且,則C的離心率為()A. B.C. D.9.下列結(jié)論正確的個(gè)數(shù)為()①若,則;②若,則;③若,則;④若,則A.4 B.3C.2 D.110.橢圓()的右頂點(diǎn)是拋物線(xiàn)的焦點(diǎn),且短軸長(zhǎng)為2,則該橢圓方程為()A. B.C. D.11.已知點(diǎn)與不重合的點(diǎn)A,B共線(xiàn),若以A,B為圓心,2為半徑的兩圓均過(guò)點(diǎn),則的取值范圍為()A. B.C. D.12.用數(shù)學(xué)歸納法證明“”的過(guò)程中,從到時(shí),不等式的左邊增加了()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.有公共焦點(diǎn),的橢圓和雙曲線(xiàn)的離心率分別為,,點(diǎn)為兩曲線(xiàn)的一個(gè)公共點(diǎn),且滿(mǎn)足,則的值為_(kāi)_____14.如圖,在直三棱柱中,,為中點(diǎn),則平面與平面夾角的正切值為_(kāi)__________.15.甲、乙兩名運(yùn)動(dòng)員5場(chǎng)比賽得分的莖葉圖如圖所示,已知甲得分的極差為32,乙得分的平均值為24,則甲、乙兩組數(shù)據(jù)的中位數(shù)是______.16.日常生活中的飲用水通常是經(jīng)過(guò)凈化的.隨著水的純凈度的提高,所需凈化費(fèi)用不斷増加.已知將噸水凈化到純凈度為時(shí)所需費(fèi)用(單位:元)為.則凈化到純凈度為時(shí)所需費(fèi)用的瞬時(shí)變化率是凈化到純凈度為時(shí)所需費(fèi)用的瞬時(shí)變化率的___________倍,這說(shuō)明,水的純凈度越高,凈化費(fèi)用增加的速度越___________(填“快”或“慢”).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知雙曲線(xiàn)的左,右焦點(diǎn)為,離心率為.(1)求雙曲線(xiàn)C的漸近線(xiàn)方程;(2)過(guò)作斜率為k的直線(xiàn)l分別交雙曲線(xiàn)的兩條漸近線(xiàn)于A,B兩點(diǎn),若,求k的值.18.(12分)設(shè)命題p:,命題q:關(guān)于x的方程無(wú)實(shí)根.(1)若p為真命題,求實(shí)數(shù)m的取值范圍;(2)若為假命題,為真命題,求實(shí)數(shù)m的取值范圍19.(12分)已知首項(xiàng)為1的等比數(shù)列,滿(mǎn)足(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和20.(12分)已知數(shù)列滿(mǎn)足,且.(1)求數(shù)列的通項(xiàng)公式;(2)若,為數(shù)列的前n項(xiàng)和,求.21.(12分)求適合下列條件的曲線(xiàn)的標(biāo)準(zhǔn)方程:(1),焦點(diǎn)在軸上的雙曲線(xiàn)的標(biāo)準(zhǔn)方程;(2)焦點(diǎn)在軸上,且焦點(diǎn)到準(zhǔn)線(xiàn)的距離是2的拋物線(xiàn)的標(biāo)準(zhǔn)方程22.(10分)圓心為的圓經(jīng)過(guò)點(diǎn),,且圓心在上,(1)求圓的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)作直線(xiàn)交圓于且,求直線(xiàn)的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)約束條件作出可行域,再將目標(biāo)函數(shù)表示的一簇直線(xiàn)畫(huà)出向可行域平移即可求解.【詳解】作出可行域,如圖所示轉(zhuǎn)化為,令則,作出直線(xiàn)并平移使它經(jīng)過(guò)可行域點(diǎn),經(jīng)過(guò)時(shí),,解得,所以此時(shí)取得最大值,即有最大值,即故選:A.2、A【解析】利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,結(jié)合函數(shù)值確定正確選項(xiàng).【詳解】由,可得函數(shù)的減區(qū)間為,增區(qū)間為,當(dāng)時(shí),,可得選項(xiàng)為A故選:A3、A【解析】根據(jù)直線(xiàn)斜率與傾斜角的關(guān)系,結(jié)合直線(xiàn)斜截式方程進(jìn)行求解即可.【詳解】因?yàn)橹本€(xiàn)的傾斜角為45°,所以該直線(xiàn)的斜率為,又因?yàn)樵撝本€(xiàn)在y軸上的截距為2022,所以該直線(xiàn)的方程為:,故選:A4、A【解析】利用導(dǎo)數(shù)運(yùn)算法則求出,根據(jù)導(dǎo)數(shù)的定義即可得到結(jié)論【詳解】由題設(shè),,所以,函數(shù)在x=π處瞬時(shí)變化率為,故選:A5、A【解析】根據(jù)直線(xiàn)方程,求得直線(xiàn)斜率,再根據(jù)傾斜角和斜率的關(guān)系,即可判斷和選擇.【詳解】若直線(xiàn)的傾斜角為,則,當(dāng)時(shí),為鈍角,當(dāng),,當(dāng),為銳角;當(dāng)不存在時(shí),傾斜角為,對(duì)A:,顯然傾斜角為鈍角;對(duì)B:,傾斜角為銳角;對(duì)C:,傾斜角為銳角;對(duì)D:不存在,此時(shí)傾斜角為直角.故選:A.6、D【解析】根據(jù)空間中射影的定義即可得到答案.【詳解】因?yàn)辄c(diǎn)是點(diǎn)在坐標(biāo)平面內(nèi)的射影,所以的豎坐標(biāo)為0,橫、縱坐標(biāo)與A點(diǎn)的橫、縱坐標(biāo)相同,所以點(diǎn)的坐標(biāo)為.故選:D7、A【解析】作出兩平面區(qū)域,計(jì)算兩區(qū)域的公共面積,利用幾何概型得出芝麻落在區(qū)域Γ內(nèi)的概率,進(jìn)而可得答案.【詳解】作出不等式組所表示的平面區(qū)域如下圖中三角形ABC及其內(nèi)部,不等式表示的區(qū)域如下圖中的圓及其內(nèi)部:由圖可得,A點(diǎn)坐標(biāo)為點(diǎn)坐標(biāo)為坐標(biāo)為點(diǎn)坐標(biāo)為.區(qū)域即的面積為,區(qū)域的面積為圓的面積,即,其中區(qū)域和區(qū)域不相交的部分面積即空白面積,所以區(qū)域和區(qū)域相交的部分面積,所以落入?yún)^(qū)域的概率為.所以均勻隨機(jī)撒顆芝麻,則落在區(qū)域中芝麻數(shù)約為.故選:A.8、B【解析】根據(jù)題意,在中,設(shè),則,進(jìn)而根據(jù)橢圓定義得,進(jìn)而可得離心率.【詳解】在中,設(shè),則,又由橢圓定義可知?jiǎng)t離心率,故選:B.【點(diǎn)睛】本題考查橢圓離心率的計(jì)算,考查運(yùn)算求解能力,是基礎(chǔ)題.本題解題的關(guān)鍵在于根據(jù)已知條件,結(jié)合橢圓的定義,在焦點(diǎn)三角形中根據(jù)邊角關(guān)系求解.9、D【解析】根據(jù)常數(shù)函數(shù)的導(dǎo)數(shù)為0,可判斷①;根據(jù)冪函數(shù)的求導(dǎo)公式,可判斷②;根據(jù)指數(shù)函數(shù)以及對(duì)數(shù)函數(shù)的求導(dǎo)公式,可判斷③④.【詳解】由得:,故①錯(cuò)誤;對(duì)于,,故,故②正確;對(duì)于,則,故③錯(cuò)誤;對(duì)于,則,故④錯(cuò)誤,故選:D10、A【解析】求得拋物線(xiàn)的焦點(diǎn)從而求得,再結(jié)合題意求得,即可寫(xiě)出橢圓方程.【詳解】因?yàn)閽佄锞€(xiàn)的焦點(diǎn)坐標(biāo)為,故可得;又短軸長(zhǎng)為2,故可得,即;故橢圓方程為:.故選:.11、D【解析】由題意可得兩點(diǎn)的坐標(biāo)滿(mǎn)足圓,然后由圓的性質(zhì)可得當(dāng)時(shí),弦長(zhǎng)最小,當(dāng)過(guò)點(diǎn)時(shí),弦長(zhǎng)最長(zhǎng),再根據(jù)向量數(shù)量積的運(yùn)算律求解即可【詳解】設(shè)點(diǎn),則以A,B為圓心,2為半徑的兩圓方程分別為和,因?yàn)閮蓤A過(guò),所以和,所以?xún)牲c(diǎn)的坐標(biāo)滿(mǎn)足圓,因?yàn)辄c(diǎn)與不重合的點(diǎn)A,B共線(xiàn),所以為圓的一條弦,所以當(dāng)弦長(zhǎng)最小時(shí),,因?yàn)?,半徑?,所以弦長(zhǎng)的最小值為,當(dāng)過(guò)點(diǎn)時(shí),弦長(zhǎng)最長(zhǎng)為4,因?yàn)?,所以?dāng)弦長(zhǎng)最小時(shí),的最大值為,當(dāng)弦長(zhǎng)最大時(shí),的最小值為,所以的取值范圍為,故選:D12、B【解析】依題意,由遞推到時(shí),不等式左邊為,與時(shí)不等式的左邊作差比較即可得到答案【詳解】用數(shù)學(xué)歸納法證明等式的過(guò)程中,假設(shè)時(shí)不等式成立,左邊,則當(dāng)時(shí),左邊,∴從到時(shí),不等式的左邊增加了故選:B二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】可設(shè)為第一象限的點(diǎn),,,求出,,化簡(jiǎn)即得解.【詳解】解:可設(shè)為第一象限的點(diǎn),,,由橢圓定義可得,由雙曲線(xiàn)的定義可得,可得,,由,可得,即為,化為,則故答案為:414、【解析】由條件可得均為等腰直角三角形,從而,先證明平面,從而,即得到為平面與平面夾角的平面角,從而可求解.【詳解】由,則,則在直三棱柱中,平面,又平面,則又,所以平面平面,所以由由條件可得均為等腰直角三角形,則所以,即,由所以平面,又平面所以,即為平面與平面夾角的平面角.在直角中,所以故答案為:15、【解析】先由極差以及平均數(shù)得出,進(jìn)而得出中位數(shù).【詳解】由可得,,,因?yàn)橐业梅值钠骄禐?4,所以,所以甲、乙兩組數(shù)據(jù)的中位數(shù)是.故答案為:16、①.②.快【解析】根據(jù)導(dǎo)數(shù)的概念可知凈化所需費(fèi)用的瞬時(shí)變化率即為函數(shù)的一階導(dǎo)數(shù),即先對(duì)函數(shù)求導(dǎo),然后將和代入進(jìn)行計(jì)算,再求,即可得到結(jié)果,進(jìn)而能夠判斷水的純凈度越高,凈化費(fèi)用增加的速度的快慢【詳解】由題意,可知凈化所需費(fèi)用的瞬時(shí)變化率為,所以,,所以,所以?xún)艋郊儍舳葹闀r(shí)所需費(fèi)用的瞬時(shí)變化率是凈化到純凈度為時(shí)所需費(fèi)用的瞬時(shí)變化率的倍;因?yàn)?,可知水的純凈度越高,凈化費(fèi)用增加的速度越快.故答案為:,快.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)由離心率可得雙曲線(xiàn)的漸近線(xiàn)方程;(2)設(shè),則的中點(diǎn)為,由,可得,然后的方程與雙曲線(xiàn)的漸近線(xiàn)方程聯(lián)立,利用韋達(dá)定理可得答案.【小問(wèn)1詳解】設(shè),則,又,所以,得,所以雙曲線(xiàn)的漸近線(xiàn)方程為.【小問(wèn)2詳解】由已知直線(xiàn)的傾斜角不是直角,,設(shè),則的中點(diǎn)為,,由,可知,所以,即,因?yàn)榈姆匠虨?,雙曲線(xiàn)的漸近線(xiàn)方程可寫(xiě)為,由消去y,得,所以,,所以,因?yàn)?,所以,?18、(1)(2)【解析】(1)解一元二次不等式,即可求得當(dāng)為真命題時(shí)的取值范圍;(2)先求得命題為真命題時(shí)的取值范圍.由為假命題,為真命題可知,兩命題一真一假.分類(lèi)討論,即可求得的取值范圍.【詳解】(1)當(dāng)為真命題時(shí),解不等式可得;(2)當(dāng)為真命題時(shí),由,可得,∵為假命題,為真命題,∴,兩命題一真一假,∴或,解得或,∴m的取值范圍是.【點(diǎn)睛】本題考查了根據(jù)命題真假求參數(shù)的取值范圍,由復(fù)合命題真假判斷命題真假,并求參數(shù)的取值范圍,屬于基礎(chǔ)題.19、(1)(2)【解析】(1)根據(jù)已知條件求得數(shù)列的公比,由此求得.(2)利用錯(cuò)位相減求和法求得.【小問(wèn)1詳解】設(shè)等比數(shù)列的公比為,由,可得.故數(shù)列是以1為首項(xiàng),3為公比的等比數(shù)列,所以【小問(wèn)2詳解】由(1)得,,①,②①②,得所以20、(1)(2)【解析】(1)由題意可得數(shù)列是以2為公差的等差數(shù)列,再由可求出,從而可求出通項(xiàng)公式,(2)由(1)可得,然后利用分組求和可求出【小問(wèn)1詳解】因?yàn)閿?shù)列滿(mǎn)足,所以數(shù)列是以2為公差的等差數(shù)列,因?yàn)?,所以,得,所以【小?wèn)2詳解】由(1)可得,所以21、(1);(2)或【解析】(1)設(shè)方程為(,),即得解;(2)由題得,即得解.【詳解】(1)解:由題意,設(shè)方程為(,),,,,,所以雙曲線(xiàn)的標(biāo)準(zhǔn)方程是(2)焦點(diǎn)到準(zhǔn)線(xiàn)的距離是2,,∴當(dāng)焦點(diǎn)在軸上時(shí),拋物線(xiàn)的標(biāo)準(zhǔn)方程為或22、(1);(2)或.【解析】(1)求出線(xiàn)段的垂直平分線(xiàn)方程,求出此直線(xiàn)與已知直線(xiàn)的交點(diǎn)坐標(biāo)即為圓心坐標(biāo),再求得半徑后可得圓的標(biāo)準(zhǔn)方程;(2)檢驗(yàn)直線(xiàn)斜率不存在時(shí)是否滿(mǎn)足題意,在斜率存在時(shí)設(shè)方程為,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論