2025屆天津市寶坻區(qū)等部分區(qū)高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第1頁
2025屆天津市寶坻區(qū)等部分區(qū)高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第2頁
2025屆天津市寶坻區(qū)等部分區(qū)高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第3頁
2025屆天津市寶坻區(qū)等部分區(qū)高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第4頁
2025屆天津市寶坻區(qū)等部分區(qū)高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆天津市寶坻區(qū)等部分區(qū)高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)雙曲線的左、右頂點(diǎn)分別為、,點(diǎn)在雙曲線上第一象限內(nèi)的點(diǎn),若的三個(gè)內(nèi)角分別為、、且,則雙曲線的漸近線方程為()A. B.C. D.2.若函數(shù),則單調(diào)增區(qū)間為()A. B.C. D.3.用數(shù)學(xué)歸納法時(shí),從“k到”左邊需增乘的代數(shù)式是()A. B.C. D.4.已知函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則下列判斷正確的是()A.在區(qū)間上,函數(shù)增函數(shù) B.在區(qū)間上,函數(shù)是減函數(shù)C.為函數(shù)的極小值點(diǎn) D.2為函數(shù)的極大值點(diǎn)5.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,而是逐項(xiàng)差數(shù)之差或者高次差相等.對(duì)這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有一個(gè)高階等差數(shù)列,其前6項(xiàng)分別為1,5,11,21,37,61,則該數(shù)列的第7項(xiàng)為()A.95 B.131C.139 D.1416.點(diǎn)到直線的距離是()A. B.C. D.7.若在直線上,則直線的一個(gè)方向向量為()A. B.C. D.8.已知是等比數(shù)列,,,則()A. B.C. D.9.已知直線和互相平行,則實(shí)數(shù)的取值為()A或3 B.C. D.1或10.?dāng)?shù)列的通項(xiàng)公式是()A. B.C. D.11.某次射擊比賽中,某選手射擊一次擊中10環(huán)的概率是,連續(xù)兩次均擊中10環(huán)的概率是,已知某次擊中10環(huán),則隨后一次擊中10環(huán)的概率是A. B.C. D.12.復(fù)數(shù),且z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,則實(shí)數(shù)m的值可以為()A.2 B.C. D.0二、填空題:本題共4小題,每小題5分,共20分。13.如圖,正方體的棱長為1,C、D分別是兩條棱的中點(diǎn),A、B、M是頂點(diǎn),那么點(diǎn)M到截面ABCD的距離是____________.14.將邊長為2的正方形繞其一邊所在的直線旋轉(zhuǎn)一周,所得的圓柱體積為________.15.若函數(shù)在處取得極小值,則a=__________16.命題“若,則二元一次不等式表示直線的右上方區(qū)域(包含邊界)”的條件:_________,結(jié)論:_____________,它是_________命題(填“真”或“假”).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)四棱錐,底面為矩形,面,且,點(diǎn)在線段上,且面.(1)求線段的長;(2)對(duì)于(1)中的,求直線與面所成角的正弦值.18.(12分)如圖,中,且,將沿中位線EF折起,使得,連結(jié)AB,AC,M為AC的中點(diǎn).(1)證明:平面ABC;(2)求二面角的余弦值.19.(12分)如圖,在正三棱柱中,,,,分別為,,的中點(diǎn)(1)證明:(2)求平面與平面所成銳二面角的余弦值20.(12分)從某居民區(qū)隨機(jī)抽取2021年的10個(gè)家庭,獲得第個(gè)家庭的月收入(單位:千元)與月儲(chǔ)蓄(單位:千元)的數(shù)據(jù)資料,計(jì)算得,,,(1)求家庭的月儲(chǔ)蓄對(duì)月收入的線性回歸方程;(2)判斷變量與之間是正相關(guān)還是負(fù)相關(guān);(3)利用(1)中的回歸方程,分析2021年該地區(qū)居民月收入與月儲(chǔ)蓄之間的變化情況,并預(yù)測(cè)當(dāng)該居民區(qū)某家庭月收入為7千元,該家庭的月儲(chǔ)蓄額.附:線性回歸方程系數(shù)公式中,,,其中,為樣本平均值21.(12分)如圖,在四棱錐中,側(cè)面底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中,,,(1)求證:平面ACF;(2)在線段PB上是否存在一點(diǎn)H,使得CH與平面ACF所成角的正弦值為?若存在,求出線段PH的長度;若不存在,請(qǐng)說明理由22.(10分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長軸長為4,離心率等于(1)求橢圓的方程(2)設(shè),若橢圓E上存在兩個(gè)不同點(diǎn)P、Q滿足,證明:直線PQ過定點(diǎn),并求該定點(diǎn)的坐標(biāo).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】設(shè)點(diǎn),其中,,求得,且有,,利用兩角和的正切公式可求得的值,進(jìn)而可求得的值,即可得出該雙曲線的漸近線的方程.【詳解】易知點(diǎn)、,設(shè)點(diǎn),其中,,且,,且,,,所以,,,因?yàn)?,所以,,則,因此,該雙曲線漸近線方程為.故選:B.2、C【解析】求出導(dǎo)函數(shù),令解不等式即可得答案.【詳解】解:因?yàn)楹瘮?shù),所以,令,得,所以的單調(diào)增區(qū)間為,故選:C.3、C【解析】分別求出n=k時(shí)左端的表達(dá)式,和n=k+1時(shí)左端的表達(dá)式,比較可得“n從k到k+1”左端需增乘的代數(shù)式【詳解】當(dāng)n=k時(shí),左端=(k+1)(k+2)(k+3)…(2k),當(dāng)n=k+1時(shí),左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左邊需增乘的代數(shù)式是故選:C【點(diǎn)睛】本題考查用數(shù)學(xué)歸納法證明等式,分別求出n=k時(shí)左端的表達(dá)式和n=k+1時(shí)左端的表達(dá)式,是解題的關(guān)鍵4、D【解析】根據(jù)導(dǎo)函數(shù)與原函數(shù)的關(guān)系可求解.【詳解】對(duì)于A,在區(qū)間,,故A不正確;對(duì)于B,在區(qū)間,,故B不正確;對(duì)于C、D,由圖可知在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,且,所以為函數(shù)的極大值點(diǎn),故C不正確,D正確.故選:D5、A【解析】利用已知條件,推出數(shù)列的差數(shù)的差組成的數(shù)列是等差數(shù)列,轉(zhuǎn)化求解即可【詳解】由題意可知,1,5,11,21,37,61,……,的差的數(shù)列為4,6,10,16,24,……,則這個(gè)數(shù)列的差組成的數(shù)列為:2,4,6,8,……,是一個(gè)等差數(shù)列,設(shè)原數(shù)列的第7項(xiàng)為,則,解得,所以原數(shù)列的第7項(xiàng)為95,故選:A6、B【解析】直接使用點(diǎn)到直線距離公式代入即可.【詳解】由點(diǎn)到直線距離公式得故選:B7、D【解析】由題意可得首先求出直線上的一個(gè)向量,即可得到它的一個(gè)方向向量,再利用平面向量共線(平行)的坐標(biāo)表示即可得出答案【詳解】∵在直線上,∴直線的一個(gè)方向向量,又∵,∴是直線的一個(gè)方向向量故選:D8、D【解析】由,,可求出公比,從而可求出等比數(shù)的通項(xiàng)公式,則可求出,得數(shù)列是一個(gè)等比數(shù)列,然后利用等比數(shù)的求和公式可求得答案【詳解】由題得.所以,所以.所以,所以數(shù)列是一個(gè)等比數(shù)列.所以=.故選:D9、B【解析】利用兩直線平行的等價(jià)條件求得實(shí)數(shù)m的值.【詳解】∵兩條直線x+my+6=0和(m﹣2)x+3y+2m=0互相平行,∴解得m=﹣1,故選B【點(diǎn)睛】已知兩直線的一般方程判定兩直線平行或垂直時(shí),記住以下結(jié)論,可避免討論:已知,,則,10、C【解析】根據(jù)數(shù)列前幾項(xiàng),歸納猜想出數(shù)列的通項(xiàng)公式.【詳解】依題意,數(shù)列的前幾項(xiàng)為:;;;……則其通項(xiàng)公式.故選C.【點(diǎn)睛】本小題主要考查歸納推理,考查數(shù)列通項(xiàng)公式的猜想,屬于基礎(chǔ)題.11、B【解析】根據(jù)條件概率的計(jì)算公式,得所求概率為,故選B.12、B【解析】根據(jù)復(fù)數(shù)的幾何意義求出的范圍,即可得出答案.【詳解】解:當(dāng)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限時(shí),則有,可得,結(jié)合選項(xiàng)可知,B正確故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意建立空間直角坐標(biāo)系,然后結(jié)合點(diǎn)面距離公式即可求得點(diǎn)M到截面ABCD的距離.【詳解】建立如圖所示的空間直角坐標(biāo)系,可得A(0,0,0),B(1,1,0),D(0,,1),M(0,1,0),∴(0,1,0),(1,1,0),(0,,1),設(shè)(x,y,z)為平面ABCD的法向量,則,取y=﹣2,可得x=2,z=1,∴(2,﹣2,1),∴M到截面ABCD的距離d故答案為.【點(diǎn)睛】本題主要考查空間直角坐標(biāo)系及其應(yīng)用,點(diǎn)面距離的計(jì)算等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.14、【解析】依題意可得圓柱的底面半徑、高,再根據(jù)圓柱的體積公式計(jì)算可得;【詳解】解:依題意可得圓柱的底面半徑,高,所以;故答案為:15、2【解析】對(duì)函數(shù)求導(dǎo),根據(jù)極值點(diǎn)得到或,討論的不同取值,利用導(dǎo)數(shù)的方法判定函數(shù)單調(diào)性,驗(yàn)證極值點(diǎn),即可得解.【詳解】由可得,因?yàn)楹瘮?shù)在處取得極小值,所以,解得或,若,則,當(dāng)時(shí),,則單調(diào)遞增;當(dāng)時(shí),,則單調(diào)遞減;當(dāng)時(shí),,則單調(diào)遞增;所以函數(shù)在處取得極小值,符合題意;當(dāng)時(shí),,當(dāng)時(shí),,則單調(diào)遞增;當(dāng)時(shí),,則單調(diào)遞減;當(dāng)時(shí),,則單調(diào)遞增;所以函數(shù)在處取得極大值,不符合題意;綜上:.故答案為:2.【點(diǎn)睛】思路點(diǎn)睛:已知函數(shù)極值點(diǎn)求參數(shù)時(shí),一般需要先對(duì)函數(shù)求導(dǎo),根據(jù)極值點(diǎn)求出參數(shù),再驗(yàn)證所求參數(shù)是否符合題意即可.16、①.②.二元一次不等式表示直線的右上方區(qū)域(包含邊界)③.真【解析】由二元一次不等式的意義可解答問題.【詳解】因?yàn)?,二元一次不等式所表示的區(qū)域如下圖所示:所以在的條件下,二元一次不等式表示直線的右上方區(qū)域(包含邊界),此命題是真命題.故答案為:;二元一次不等式表示直線的右上方區(qū)域(包含邊界);真三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)1(2)【解析】(1)根據(jù)線面垂直得到,再由相似比得方程可求解;(2)建立空間直角坐標(biāo)系,求平面的法向量,運(yùn)用夾角公式先求線面角的余弦值,再轉(zhuǎn)化為正弦值即可.小問1詳解】面,在矩形中,易得:;【小問2詳解】如四建立空間直角坐標(biāo)系:則,,由題意可知:為平面的一個(gè)法向量,,,直線與面所成角的正弦值為.18、(1)證明見解析(2)【解析】(1)由勾股定理以及等腰三角形的性質(zhì)得出,,再由線面垂直的判定證明即可;(2)以點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,由向量法得出面面角.【小問1詳解】設(shè),則,,平面平面,連接,,,,,即又,平面ABC【小問2詳解】,以點(diǎn)為坐標(biāo)原點(diǎn),建立如下圖所示的空間直角坐標(biāo)系設(shè)平面的法向量為,平面的法向量為,令,則同理可得,又二面角為鈍角,故二面角的余弦值為.19、(1)證明見解析(2)【解析】(1)由已知,以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,分別表示出B、D、E、F點(diǎn)的坐標(biāo),然后通過計(jì)算向量數(shù)量積來進(jìn)行證明;(2)由第(1)建立的空間直角坐標(biāo)系,分別表示出對(duì)應(yīng)點(diǎn)的坐標(biāo),然后計(jì)算平面與平面的法向量,然后通過法向量去計(jì)算兩平面所成的銳二面角即可.【小問1詳解】如圖,以為坐標(biāo)原點(diǎn),以,的方向分別為,軸的正方向建立如圖所示的空間直角坐標(biāo)系,由,,,分別為,,的中點(diǎn),則,,證明:因?yàn)椋?,所以,所以【小?詳解】設(shè)平面的法向量為,因?yàn)?,,所以,令,得設(shè)平面的法向量為,則令,得因?yàn)樗云矫媾c平面所成銳二面角的余弦值為20、(1)=0.3x-0.4(2)正相關(guān)(3)1.7千元【解析】(1)由題意得到n=10,求得,進(jìn)而求得,寫出回歸方程;.(2)由判斷;(3)將x=7代入回歸方程求解.【小問1詳解】由題意知n=10,,則,所以所求回歸方程為=0.3x-0.4.【小問2詳解】因?yàn)?,所以變量y的值隨x的值增加而增加,故x與y之間是正相關(guān).【小問3詳解】將x=7代入回歸方程可以預(yù)測(cè)該家庭的月儲(chǔ)蓄為=0.3×7-0.4=1.7(千元).21、(1)證明見解析(2)存在,的長為或,理由見解析.【解析】(1)建立空間直角坐標(biāo)系,利用向量法證得平面.(2)設(shè),求出,根據(jù)與平面所成角的正弦值列方程,由此求得,進(jìn)而求得的長.小問1詳解】依題意,在四棱錐中,側(cè)面底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中,,,,以為空間坐標(biāo)原點(diǎn)建立如圖所示空間直角坐標(biāo)系,,,設(shè)平面法向量為,則,故可設(shè),由于,所以平面.【小問2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論