山東省棗莊市薛城區(qū)奚仲中學(xué)2023-2024學(xué)年中考四模數(shù)學(xué)試題含解析_第1頁
山東省棗莊市薛城區(qū)奚仲中學(xué)2023-2024學(xué)年中考四模數(shù)學(xué)試題含解析_第2頁
山東省棗莊市薛城區(qū)奚仲中學(xué)2023-2024學(xué)年中考四模數(shù)學(xué)試題含解析_第3頁
山東省棗莊市薛城區(qū)奚仲中學(xué)2023-2024學(xué)年中考四模數(shù)學(xué)試題含解析_第4頁
山東省棗莊市薛城區(qū)奚仲中學(xué)2023-2024學(xué)年中考四模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省棗莊市薛城區(qū)奚仲中學(xué)2023-2024學(xué)年中考四模數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在平面直角坐標(biāo)系中,等腰直角三角形ABC的頂點A、B分別在x軸、y軸的正半軸上,∠ABC=90°,CA⊥x軸,點C在函數(shù)y=(x>0)的圖象上,若AB=2,則k的值為()A.4 B.2 C.2 D.2.如圖,在菱形ABCD中,∠A=60°,E是AB邊上一動點(不與A、B重合),且∠EDF=∠A,則下列結(jié)論錯誤的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等邊三角形 D.△BEF是等腰三角形3.下列分式中,最簡分式是()A. B. C. D.4.如果(,均為非零向量),那么下列結(jié)論錯誤的是()A.// B.-2=0 C.= D.5.下列幾何體中三視圖完全相同的是()A. B. C. D.6.十九大報告指出,我國目前經(jīng)濟保持了中高速增長,在世界主要國家中名列前茅,國內(nèi)生產(chǎn)總值從54萬億元增長80萬億元,穩(wěn)居世界第二,其中80萬億用科學(xué)記數(shù)法表示為()A.8×1012 B.8×1013 C.8×1014 D.0.8×10137.如圖,菱形ABCD中,E.F分別是AB、AC的中點,若EF=3,則菱形ABCD的周長是()A.12 B.16 C.20 D.248.一個正多邊形的內(nèi)角和為900°,那么從一點引對角線的條數(shù)是()A.3 B.4 C.5 D.69.圓錐的底面直徑是80cm,母線長90cm,則它的側(cè)面積是A. B. C. D.10.如圖,將△ABC沿著點B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距離為6,則陰影部分面積為()A.42 B.96 C.84 D.48二、填空題(本大題共6個小題,每小題3分,共18分)11.在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間.甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲、乙行駛過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數(shù)關(guān)系如圖所示.則當(dāng)乙車到達A地時,甲車已在C地休息了_____小時.12.某招聘考試分筆試和面試兩種,其中筆試按60%、面試按40%計算加權(quán)平均數(shù),作為總成績.孔明筆試成績90分,面試成績85分,那么孔明的總成績是分.13.如圖,在Rt△ABC中,∠C=90°,AC=8,BC=1.在邊AB上取一點O,使BO=BC,以點O為旋轉(zhuǎn)中心,把△ABC逆時針旋轉(zhuǎn)90°,得到△A′B′C′(點A、B、C的對應(yīng)點分別是點A′、B′、C′、),那么△ABC與△A′B′C′的重疊部分的面積是_________.14.如圖,Rt△ABC的直角邊BC在x軸上,直線y=x﹣經(jīng)過直角頂點B,且平分△ABC的面積,BC=3,點A在反比例函數(shù)y=圖象上,則k=_______.15.如圖,O是矩形ABCD的對角線AC的中點,M是AD的中點,若AB=5,AD=12,則四邊形ABOM的周長為.16.小明和小亮分別從A、B兩地同時相向而行,并以各自的速度勻速行駛,途中會經(jīng)過奶茶店C,小明先到達奶茶店C,并在C地休息了一小時,然后按原速度前往B地,小亮從B地直達A地,結(jié)果還是小明先到達目的地,如圖是小明和小亮兩人之間的距離y(千米)與小亮出發(fā)時間x(時)的函數(shù)的圖象,請問當(dāng)小明到達B地時,小亮距離A地_____千米.三、解答題(共8題,共72分)17.(8分)某小學(xué)為了了解學(xué)生每天完成家庭作業(yè)所用時間的情況,從每班抽取相同數(shù)量的學(xué)生進行調(diào)查,并將所得數(shù)據(jù)進行整理,制成條形統(tǒng)計圖和扇形統(tǒng)計圖如下:補全條形統(tǒng)計圖;求扇形統(tǒng)計圖扇形D的圓心角的度數(shù);若該中學(xué)有2000名學(xué)生,請估計其中有多少名學(xué)生能在1.5小時內(nèi)完成家庭作業(yè)?18.(8分)如圖,在四邊形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四邊形ABCD的周長.19.(8分)如圖,直線與軸交于點,與軸交于點,且與雙曲線的一個交點為,將直線在軸下方的部分沿軸翻折,得到一個“”形折線的新函數(shù).若點是線段上一動點(不包括端點),過點作軸的平行線,與新函數(shù)交于另一點,與雙曲線交于點.(1)若點的橫坐標(biāo)為,求的面積;(用含的式子表示)(2)探索:在點的運動過程中,四邊形能否為平行四邊形?若能,求出此時點的坐標(biāo);若不能,請說明理由.20.(8分)解不等式組,并將它的解集在數(shù)軸上表示出來.21.(8分)已知,如圖1,直線y=x+3與x軸、y軸分別交于A、C兩點,點B在x軸上,點B的橫坐標(biāo)為,拋物線經(jīng)過A、B、C三點.點D是直線AC上方拋物線上任意一點.(1)求拋物線的函數(shù)關(guān)系式;(2)若P為線段AC上一點,且S△PCD=2S△PAD,求點P的坐標(biāo);(3)如圖2,連接OD,過點A、C分別作AM⊥OD,CN⊥OD,垂足分別為M、N.當(dāng)AM+CN的值最大時,求點D的坐標(biāo).22.(10分)某商人制成了一個如圖所示的轉(zhuǎn)盤,取名為“開心大轉(zhuǎn)盤”,游戲規(guī)定:參與者自由轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針指向字母“A”,則收費2元,若指針指向字母“B”,則獎勵3元;若指針指向字母“C”,則獎勵1元.一天,前來尋開心的人轉(zhuǎn)動轉(zhuǎn)盤80次,你認為該商人是盈利的可能性大還是虧損的可能性大?為什么?23.(12分)我們知道中,如果,,那么當(dāng)時,的面積最大為6;(1)若四邊形中,,且,直接寫出滿足什么位置關(guān)系時四邊形面積最大?并直接寫出最大面積.(2)已知四邊形中,,求為多少時,四邊形面積最大?并求出最大面積是多少?24.如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=1OD,OE=1OC,然后以O(shè)G、OE為鄰邊作正方形OEFG,連接AG,DE.(1)求證:DE⊥AG;(1)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖1.①在旋轉(zhuǎn)過程中,當(dāng)∠OAG′是直角時,求α的度數(shù);②若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結(jié)果不必說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】【分析】作BD⊥AC于D,如圖,先利用等腰直角三角形的性質(zhì)得到AC=AB=2,BD=AD=CD=,再利用AC⊥x軸得到C(,2),然后根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征計算k的值.【詳解】作BD⊥AC于D,如圖,∵△ABC為等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x軸,∴C(,2),把C(,2)代入y=得k=×2=4,故選A.【點睛】本題考查了等腰直角三角形的性質(zhì)以及反比例函數(shù)圖象上點的坐標(biāo)特征,熟知反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k是解題的關(guān)鍵.2、D【解析】

連接BD,可得△ADE≌△BDF,然后可證得DE=DF,AE=BF,即可得△DEF是等邊三角形,然后可證得∠ADE=∠BEF.【詳解】連接BD,∵四邊形ABCD是菱形,

∴AD=AB,∠ADB=∠ADC,AB∥CD,

∵∠A=60°,

∴∠ADC=120°,∠ADB=60°,

同理:∠DBF=60°,

即∠A=∠DBF,

∴△ABD是等邊三角形,

∴AD=BD,

∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,

∴∠ADE=∠BDF,

∵在△ADE和△BDF中,,

∴△ADE≌△BDF(ASA),

∴DE=DF,AE=BF,故A正確;

∵∠EDF=60°,

∴△EDF是等邊三角形,

∴C正確;

∴∠DEF=60°,

∴∠AED+∠BEF=120°,

∵∠AED+∠ADE=180°-∠A=120°,

∴∠ADE=∠BEF;

故B正確.

∵△ADE≌△BDF,

∴AE=BF,

同理:BE=CF,

但BE不一定等于BF.

故D錯誤.

故選D.【點睛】本題考查了菱形的性質(zhì)、等邊三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是正確尋找全等三角形解決問題.3、A【解析】試題分析:選項A為最簡分式;選項B化簡可得原式==;選項C化簡可得原式==;選項D化簡可得原式==,故答案選A.考點:最簡分式.4、B【解析】試題解析:向量最后的差應(yīng)該還是向量.故錯誤.故選B.5、A【解析】

找到從物體正面、左面和上面看得到的圖形全等的幾何體即可.【詳解】解:A、球的三視圖完全相同,都是圓,正確;B、圓柱的俯視圖與主視圖和左視圖不同,錯誤;C、圓錐的俯視圖與主視圖和左視圖不同,錯誤;D、四棱錐的俯視圖與主視圖和左視圖不同,錯誤;故選A.【點睛】考查三視圖的有關(guān)知識,注意三視圖都相同的常見的幾何體有球和正方體.6、B【解析】80萬億用科學(xué)記數(shù)法表示為8×1.故選B.點睛:本題考查了科學(xué)計數(shù)法,科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).7、D【解析】

根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求出,再根據(jù)菱形的周長公式列式計算即可得解.【詳解】、分別是、的中點,是的中位線,,菱形的周長.故選:.【點睛】本題主要考查了菱形的四邊形都相等,三角形的中位線平行于第三邊并且等于第三邊的一半,求出菱形的邊長是解題的關(guān)鍵.8、B【解析】

n邊形的內(nèi)角和可以表示成(n-2)?180°,設(shè)這個多邊形的邊數(shù)是n,就得到關(guān)于邊數(shù)的方程,從而求出邊數(shù),再求從一點引對角線的條數(shù).【詳解】設(shè)這個正多邊形的邊數(shù)是n,則

(n-2)?180°=900°,

解得:n=1.

則這個正多邊形是正七邊形.所以,從一點引對角線的條數(shù)是:1-3=4.故選B【點睛】本題考核知識點:多邊形的內(nèi)角和.解題關(guān)鍵點:熟記多邊形內(nèi)角和公式.9、D【解析】圓錐的側(cè)面積=×80π×90=3600π(cm2).故選D.10、D【解析】

由平移的性質(zhì)知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四邊形ODFC=S梯形ABEO=(AB+OE)?BE=(10+6)×6=1.故選D.【點睛】本題考查平移的性質(zhì),平移前后兩個圖形大小,形狀完全相同,圖形上的每個點都平移了相同的距離,對應(yīng)點之間的距離就是平移的距離.二、填空題(本大題共6個小題,每小題3分,共18分)11、2.1.【解析】

根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以求得乙車的速度和到達A地時所用的時間,從而可以解答本題.【詳解】由題意可得,甲車到達C地用時4個小時,乙車的速度為:200÷(3.1﹣1)=80km/h,乙車到達A地用時為:(200+240)÷80+1=6.1(小時),當(dāng)乙車到達A地時,甲車已在C地休息了:6.1﹣4=2.1(小時),故答案為:2.1.【點睛】本題考查了一次函數(shù)的圖象,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.12、88【解析】試題分析:根據(jù)筆試和面試所占的百分比以及筆試成績和面試成績,列出算式,進行計算即可:∵筆試按60%、面試按40%計算,∴總成績是:90×60%+85×40%=88(分).13、【解析】

先求得OD,AE,DE的值,再利用S四邊形ODEF=S△AOF-S△ADE即可.【詳解】如圖,OA’=OA=4,則OD=OA’=3,OD=3∴AD=1,可得DE=,AE=∴S四邊形ODEF=S△AOF-S△ADE=×3×4-××=.故答案為.【點睛】本題考查的知識點是三角形的旋轉(zhuǎn),解題的關(guān)鍵是熟練的掌握三角形的旋轉(zhuǎn).14、1【解析】分析:根據(jù)題意得出點B的坐標(biāo),根據(jù)面積平分得出點D的坐標(biāo),利用三角形相似可得點A的坐標(biāo),從而求出k的值.詳解:根據(jù)一次函數(shù)可得:點B的坐標(biāo)為(1,0),∵BD平分△ABC的面積,BC=3∴點D的橫坐標(biāo)1.5,∴點D的坐標(biāo)為,∵DE:AB=1:1,∴點A的坐標(biāo)為(1,1),∴k=1×1=1.點睛:本題主要考查的是反比例函數(shù)的性質(zhì)以及三角形相似的應(yīng)用,屬于中等難度的題型.得出點D的坐標(biāo)是解決這個問題的關(guān)鍵.15、1.【解析】

∵AB=5,AD=12,∴根據(jù)矩形的性質(zhì)和勾股定理,得AC=13.∵BO為Rt△ABC斜邊上的中線∴BO=6.5∵O是AC的中點,M是AD的中點,∴OM是△ACD的中位線∴OM=2.5∴四邊形ABOM的周長為:6.5+2.5+6+5=1故答案為116、1【解析】

根據(jù)題意設(shè)小明的速度為akm/h,小亮的速度為bkm/h,求出a,b的值,再代入方程即可解答.【詳解】設(shè)小明的速度為akm/h,小亮的速度為bkm/h,,解得,,當(dāng)小明到達B地時,小亮距離A地的距離是:120×(3.5﹣1)﹣60×3.5=1(千米),故答案為1.【點睛】此題考查一次函數(shù)的應(yīng)用,解題關(guān)鍵在于列出方程組.三、解答題(共8題,共72分)17、(1)補圖見解析;(2)27°;(3)1800名【解析】

(1)根據(jù)A類的人數(shù)是10,所占的百分比是25%即可求得總?cè)藬?shù),然后根據(jù)百分比的意義求得B類的人數(shù);

(2)用360°乘以對應(yīng)的比例即可求解;

(3)用總?cè)藬?shù)乘以對應(yīng)的百分比即可求解.【詳解】(1)抽取的總?cè)藬?shù)是:10÷25%=40(人),在B類的人數(shù)是:40×30%=12(人).;(2)扇形統(tǒng)計圖扇形D的圓心角的度數(shù)是:360×=27°;(3)能在1.5小時內(nèi)完成家庭作業(yè)的人數(shù)是:2000×(25%+30%+35%)=1800(人).考點:條形統(tǒng)計圖、扇形統(tǒng)計圖.18、38+12【解析】

根據(jù)∠ABC=90°,AE=CE,EB=12,求出AC,根據(jù)Rt△ABC中,∠CAB=30°,BC=12,求出根據(jù)DE⊥AC,AE=CE,得AD=DC,在Rt△ADE中,由勾股定理求出AD,從而得出DC的長,最后根據(jù)四邊形ABCD的周長=AB+BC+CD+DA即可得出答案.【詳解】∵∠ABC=90°,AE=CE,EB=12,∴EB=AE=CE=12,∴AC=AE+CE=24,∵在Rt△ABC中,∠CAB=30°,∴BC=12,∵DE⊥AC,AE=CE,∴AD=DC,在Rt△ADE中,由勾股定理得∴DC=13,∴四邊形ABCD的周長=AB+BC+CD+DA=【點睛】此題考查了解直角三角形,用到的知識點是解直角三角形、直角三角形斜邊上的中線、勾股定理等,關(guān)鍵是根據(jù)有關(guān)定理和解直角三角形求出四邊形每條邊的長.19、(1);(2)不能成為平行四邊形,理由見解析【解析】

(1)將點B坐標(biāo)代入一次函數(shù)上可得出點B的坐標(biāo),由點B的坐標(biāo),利用待定系數(shù)法可求出反比例函數(shù)解析式,根據(jù)點的坐標(biāo)為,可以判斷出,再由點P的橫坐標(biāo)可得出點P的坐標(biāo)是,結(jié)合PD∥x軸可得出點D的坐標(biāo),再利用三角形的面積公式即可用含的式子表示出△MPD的面積;

(2)當(dāng)P為BM的中點時,利用中點坐標(biāo)公式可得出點P的坐標(biāo),結(jié)合PD∥x軸可得出點D的坐標(biāo),由折疊的性質(zhì)可得出直線MN的解析式,利用一次函數(shù)圖象上點的坐標(biāo)特征可得出點C的坐標(biāo),由點P,C,D的坐標(biāo)可得出PD≠PC,由此即可得出四邊形BDMC不能成為平行四邊形.【詳解】解:(1)∵點在直線上,∴.∵點在的圖像上,∴,∴.設(shè),則.∵∴.記的面積為,∴.(2)當(dāng)點為中點時,其坐標(biāo)為,∴.∵直線在軸下方的部分沿軸翻折得表示的函數(shù)表達式是:,∴,∴,∴與不能互相平分,∴四邊形不能成為平行四邊形.【點睛】本題考查了一次函數(shù)圖象上點的坐標(biāo)特征、待定系數(shù)法求反比例函數(shù)解析式、反比例函數(shù)圖象上點的坐標(biāo)特征、三角形的面積、折疊的性質(zhì)以及平行四邊形的判定,解題的關(guān)鍵是:(1)利用一次(反比例)函數(shù)圖象上點的坐標(biāo)特征,找出點P,M,D的坐標(biāo);(2)利用平行四邊形的對角線互相平分,找出四邊形BDMC不能成為平行四邊形.20、x≤1,解集表示在數(shù)軸上見解析【解析】

首先根據(jù)不等式的解法求解不等式,然后在數(shù)軸上表示出解集.【詳解】去分母,得:3x﹣2(x﹣1)≤3,去括號,得:3x﹣2x+2≤3,移項,得:3x﹣2x≤3﹣2,合并同類項,得:x≤1,將解集表示在數(shù)軸上如下:【點睛】本題考查了解一元一次不等式,解題的關(guān)鍵是掌握不等式的解法以及在數(shù)軸上表示不等式的解集.21、(1)y=﹣x2﹣x+3;(2)點P的坐標(biāo)為(﹣,1);(3)當(dāng)AM+CN的值最大時,點D的坐標(biāo)為(,).【解析】

(1)利用一次函數(shù)圖象上點的坐標(biāo)特征可求出點A、C的坐標(biāo),由點B所在的位置結(jié)合點B的橫坐標(biāo)可得出點B的坐標(biāo),根據(jù)點A、B、C的坐標(biāo),利用待定系數(shù)法即可求出拋物線的函數(shù)關(guān)系式;(2)過點P作PE⊥x軸,垂足為點E,則△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性質(zhì)即可求出AE、PE的長度,進而可得出點P的坐標(biāo);(3)連接AC交OD于點F,由點到直線垂線段最短可找出當(dāng)AC⊥OD時AM+CN取最大值,過點D作DQ⊥x軸,垂足為點Q,則△DQO∽△AOC,根據(jù)相似三角形的性質(zhì)可設(shè)點D的坐標(biāo)為(﹣3t,4t),利用二次函數(shù)圖象上點的坐標(biāo)特征可得出關(guān)于t的一元二次方程,解之取其負值即可得出t值,再將其代入點D的坐標(biāo)即可得出結(jié)論.【詳解】(1)∵直線y=x+3與x軸、y軸分別交于A、C兩點,∴點A的坐標(biāo)為(﹣4,0),點C的坐標(biāo)為(0,3).∵點B在x軸上,點B的橫坐標(biāo)為,∴點B的坐標(biāo)為(,0),設(shè)拋物線的函數(shù)關(guān)系式為y=ax2+bx+c(a≠0),將A(﹣4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:,解得:,∴拋物線的函數(shù)關(guān)系式為y=﹣x2﹣x+3;(2)如圖1,過點P作PE⊥x軸,垂足為點E,∵△PCD、△PAD有相同的高,且S△PCD=2S△PAD,∴CP=2AP,∵PE⊥x軸,CO⊥x軸,∴△APE∽△ACO,∴,∴AE=AO=,PE=CO=1,∴OE=OA﹣AE=,∴點P的坐標(biāo)為(﹣,1);(3)如圖2,連接AC交OD于點F,∵AM⊥OD,CN⊥OD,∴AF≥AM,CF≥CN,∴當(dāng)點M、N、F重合時,AM+CN取最大值,過點D作DQ⊥x軸,垂足為點Q,則△DQO∽△AOC,∴,∴設(shè)點D的坐標(biāo)為(﹣3t,4t).∵點D在拋物線y=﹣x2﹣x+3上,∴4t=﹣3t2+t+3,解得:t1=﹣(不合題意,舍去),t2=,∴點D的坐標(biāo)為(,),故當(dāng)AM+CN的值最大時,點D的坐標(biāo)為(,).【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、一次(二次)函數(shù)圖象上點的坐標(biāo)特征、三角形的面積以及相似三角形的性質(zhì),解題的關(guān)鍵是:(1)根據(jù)點A、B、C的坐標(biāo),利用待定系數(shù)法求出拋物線的函數(shù)關(guān)系式;(2)利用相似三角形的性質(zhì)找出AE、PE的長;(3)利用相似三角形的性質(zhì)設(shè)點D的坐標(biāo)為(﹣3t,4t).22、商人盈利的可能性大.【解析】試題分析:根據(jù)幾何概率的定義,面積比即概率.圖中A,B,C所占的面積與總面積之比即為A,B,C各自的概率,算出相應(yīng)的可能性,乘以錢數(shù),比較即可.試題解析:商人盈利的可能性大.商人收費:80××2=80(元),商人獎勵:80××3+80××1=60(元),因為80>60,所以商人盈利的可能性大.23、(1)當(dāng),時有最大值1;(2)當(dāng)時,面積有最大值32.【解析】

(1)由題意當(dāng)AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,由此即可解決問題.

(2)設(shè)BD=x,由題意:當(dāng)AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.【詳解】(1)由題意當(dāng)AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,

最大面積為×6×(16-6)=1.故當(dāng),時有最大值1;(2)當(dāng),時有最大值,設(shè),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論