山東省樂陵市2024屆中考三模數(shù)學(xué)試題含解析_第1頁
山東省樂陵市2024屆中考三模數(shù)學(xué)試題含解析_第2頁
山東省樂陵市2024屆中考三模數(shù)學(xué)試題含解析_第3頁
山東省樂陵市2024屆中考三模數(shù)學(xué)試題含解析_第4頁
山東省樂陵市2024屆中考三模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省樂陵市2024屆中考三模數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.空氣的密度為0.00129g/cm3,0.00129這個數(shù)用科學(xué)記數(shù)法可表示為()A.0.129×10﹣2 B.1.29×10﹣2 C.1.29×10﹣3 D.12.9×10﹣12.一艘在南北航線上的測量船,于A點處測得海島B在點A的南偏東30°方向,繼續(xù)向南航行30海里到達(dá)C點時,測得海島B在C點的北偏東15°方向,那么海島B離此航線的最近距離是()(結(jié)果保留小數(shù)點后兩位)(參考數(shù)據(jù):3≈1.732,2≈1.414)A.4.64海里B.5.49海里C.6.12海里D.6.21海里3.如圖所示,在方格紙上建立的平面直角坐標(biāo)系中,將△ABC繞點O按順時針方向旋轉(zhuǎn)90°,得到△A′B′O,則點A′的坐標(biāo)為()A.(3,1) B.(3,2) C.(2,3) D.(1,3)4.如圖所示,把直角三角形紙片沿過頂點B的直線(BE交CA于E)折疊,直角頂點C落在斜邊AB上,如果折疊后得等腰△EBA,那么結(jié)論中:①∠A=30°;②點C與AB的中點重合;③點E到AB的距離等于CE的長,正確的個數(shù)是()A.0 B.1 C.2 D.35.不等式組1-x≤0,3x-6<0A. B. C. D.6.如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點C沿順時針方向旋轉(zhuǎn)后得到三角形A′B′C,若點B′恰好落在線段AB上,AC、A′B′交于點O,則∠COA′的度數(shù)是()A.50° B.60° C.70° D.80°7.一次函數(shù)y=kx﹣1的圖象經(jīng)過點P,且y的值隨x值的增大而增大,則點P的坐標(biāo)可以為()A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)8.小帶和小路兩個人開車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,小帶和小路兩人車離開A城的距離y(km)與行駛的時間t(h)之間的函數(shù)關(guān)系如圖所示.有下列結(jié)論;①A,B兩城相距300km;②小路的車比小帶的車晚出發(fā)1h,卻早到1h;③小路的車出發(fā)后2.5h追上小帶的車;④當(dāng)小帶和小路的車相距50km時,t=或t=.其中正確的結(jié)論有()A.①②③④ B.①②④C.①② D.②③④9.如圖,在△ABC中,DE∥BC交AB于D,交AC于E,錯誤的結(jié)論是(

).A. B. C. D.10.如圖1是2019年4月份的日歷,現(xiàn)用一長方形在日歷表中任意框出4個數(shù)(如圖2),下列表示a,b,c,d之間關(guān)系的式子中不正確的是()A.a(chǎn)﹣d=b﹣c B.a(chǎn)+c+2=b+d C.a(chǎn)+b+14=c+d D.a(chǎn)+d=b+c11.為考察兩名實習(xí)工人的工作情況,質(zhì)檢部將他們工作第一周每天生產(chǎn)合格產(chǎn)品的個數(shù)整理成甲,乙兩組數(shù)據(jù),如下表:甲26778乙23488關(guān)于以上數(shù)據(jù),說法正確的是()A.甲、乙的眾數(shù)相同 B.甲、乙的中位數(shù)相同C.甲的平均數(shù)小于乙的平均數(shù) D.甲的方差小于乙的方差12.如圖是一個正方體展開圖,把展開圖折疊成正方體后,“愛”字一面相對面上的字是()A.美 B.麗 C.泗 D.陽二、填空題:(本大題共6個小題,每小題4分,共24分.)13.我國古代有這樣一道數(shù)學(xué)問題:“枯木一根直立地上,高二丈,周三尺,有葛藤自根纏繞而上,五周而達(dá)其頂,問葛藤之長幾何?”題意是:如圖所示,把枯木看作一個圓柱體,因一丈是十尺,則該圓柱的高為20尺,底面周長為3尺,有葛藤自點A處纏繞而上,繞五周后其末端恰好到達(dá)點B處,則問題中葛藤的最短長度是尺.

14.如圖,在△ABC中,∠ACB=90°,AC=BC=3,將△ABC折疊,使點A落在BC邊上的點D處,EF為折痕,若AE=2,則sin∠BFD的值為_____.15.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,若∠BOD=88°,則∠BCD的度數(shù)是_________.16.有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;⑤由a2=b2,得a=b.其中正確的是_____.17.在函數(shù)y=x-1的表達(dá)式中,自變量x的取值范圍是.18.如圖①,在矩形ABCD中,對角線AC與BD交于點O,動點P從點A出發(fā),沿AB勻速運動,到達(dá)點B時停止,設(shè)點P所走的路程為x,線段OP的長為y,若y與x之間的函數(shù)圖象如圖②所示,則矩形ABCD的周長為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,正方形OABC繞著點O逆時針旋轉(zhuǎn)40°得到正方形ODEF,連接AF,求∠OFA的度數(shù)20.(6分)某跳水隊為了解運動員的年齡情況,作了一次年齡調(diào)查,根據(jù)跳水運動員的年齡(單位:歲),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:本次接受調(diào)查的跳水運動員人數(shù)為,圖①中m的值為;求統(tǒng)計的這組跳水運動員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).21.(6分)如圖,在△ABC中,點D、E分別在邊AB、AC上,DE∥BC,且DE=BC.如果AC=6,求AE的長;設(shè),,求向量(用向量、表示).22.(8分)我們來定義一種新運算:對于任意實數(shù)x、y,“※”為a※b=(a+1)(b+1)﹣1.(1)計算(﹣3)※9(2)嘉琪研究運算“※”之后認(rèn)為它滿足交換律,你認(rèn)為她的判斷(正確、錯誤)(3)請你幫助嘉琪完成她對運算“※”是否滿足結(jié)合律的證明.23.(8分)如圖,在航線l的兩側(cè)分別有觀測點A和B,點A到航線的距離為2km,點B位于點A北偏東60°方向且與A相距10km.現(xiàn)有一艘輪船從位于點B南偏西76°方向的C處,正沿該航線自西向東航行,5分鐘后該輪船行至點A的正北方向的D處.(1)求觀測點B到航線的距離;(2)求該輪船航行的速度(結(jié)果精確到0.1km/h).(參考數(shù)據(jù):≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)24.(10分)在矩形ABCD中,兩條對角線相交于O,∠AOB=60°,AB=2,求AD的長.25.(10分)解不等式組,并把解集在數(shù)軸上表示出來.26.(12分)如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑,OD⊥AB,與AC交于點E,與過點C的⊙O的切線交于點D.若AC=4,BC=2,求OE的長.試判斷∠A與∠CDE的數(shù)量關(guān)系,并說明理由.27.(12分)先化簡,再求值:x2

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】試題分析:0.00129這個數(shù)用科學(xué)記數(shù)法可表示為1.29×10﹣1.故選C.考點:科學(xué)記數(shù)法—表示較小的數(shù).2、B【解析】

根據(jù)題意畫出圖如圖所示:作BD⊥AC,取BE=CE,根據(jù)三角形內(nèi)角和和等腰三角形的性質(zhì)得出BA=BE,AD=DE,設(shè)BD=x,Rt△ABD中,根據(jù)勾股定理得AD=DE=

3x,AB=BE=CE=2x,由AC=AD+DE+EC=2

3x+2x=30,解之即可得出答案.【詳解】根據(jù)題意畫出圖如圖所示:作BD⊥AC,取BE=CE,

∵AC=30,∠CAB=30°∠ACB=15°,

∴∠ABC=135°,

又∵BE=CE,

∴∠ACB=∠EBC=15°,

∴∠ABE=120°,

又∵∠CAB=30°

∴BA=BE,AD=DE,

設(shè)BD=x,

在Rt△ABD中,

∴AD=DE=

3x,AB=BE=CE=2x,

∴AC=AD+DE+EC=2

3x+2x=30,

∴x=153+1

=

15【點睛】本題考查了三角形內(nèi)角和定理與等腰直角三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握三角形內(nèi)角和定理與等腰直角三角形的性質(zhì).3、D【解析】

解決本題抓住旋轉(zhuǎn)的三要素:旋轉(zhuǎn)中心O,旋轉(zhuǎn)方向順時針,旋轉(zhuǎn)角度90°,通過畫圖得A′.【詳解】由圖知A點的坐標(biāo)為(-3,1),根據(jù)旋轉(zhuǎn)中心O,旋轉(zhuǎn)方向順時針,旋轉(zhuǎn)角度90°,畫圖,從而得A′點坐標(biāo)為(1,3).故選D.4、D【解析】

根據(jù)翻折變換的性質(zhì)分別得出對應(yīng)角相等以及利用等腰三角形的性質(zhì)判斷得出即可.【詳解】∵把直角三角形紙片沿過頂點B的直線(BE交CA于E)折疊,直角頂點C落在斜邊AB上,折疊后得等腰△EBA,∴∠A=∠EBA,∠CBE=∠EBA,∴∠A=∠CBE=∠EBA,∵∠C=90°,∴∠A+∠CBE+∠EBA=90°,∴∠A=∠CBE=∠EBA=30°,故①選項正確;∵∠A=∠EBA,∠EDB=90°,∴AD=BD,故②選項正確;∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,∴EC=ED(角平分線上的點到角的兩邊距離相等),∴點E到AB的距離等于CE的長,故③選項正確,故正確的有3個.故選D.【點睛】此題主要考查了翻折變換的性質(zhì)以及角平分線的性質(zhì)和等腰三角形的性質(zhì)等知識,利用折疊前后對應(yīng)角相等是解題關(guān)鍵.5、D【解析】試題分析:1-x≤0①3x-6<0②,由①得:x≥1,由②得:x<2,在數(shù)軸上表示不等式的解集是:,故選D.考點:1.在數(shù)軸上表示不等式的解集;2.解一元一次不等式組.6、B【解析】試題分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋轉(zhuǎn)的性質(zhì)可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故選B.考點:旋轉(zhuǎn)的性質(zhì).7、C【解析】【分析】根據(jù)函數(shù)圖象的性質(zhì)判斷系數(shù)k>0,則該函數(shù)圖象經(jīng)過第一、三象限,由函數(shù)圖象與y軸交于負(fù)半軸,則該函數(shù)圖象經(jīng)過第一、三、四象限,由此得到結(jié)論.【詳解】∵一次函數(shù)y=kx﹣1的圖象的y的值隨x值的增大而增大,∴k>0,A、把點(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合題意;B、把點(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合題意;C、把點(2,2)代入y=kx﹣1得到:k=>0,符合題意;D、把點(5,﹣1)代入y=kx﹣1得到:k=0,不符合題意,故選C.【點睛】考查了一次函數(shù)圖象上點的坐標(biāo)特征,一次函數(shù)的性質(zhì),根據(jù)題意求得k>0是解題的關(guān)鍵.8、C【解析】

觀察圖象可判斷①②,由圖象所給數(shù)據(jù)可求得小帶、小路兩車離開A城的距離y與時間t的關(guān)系式,可求得兩函數(shù)圖象的交點,可判斷③,再令兩函數(shù)解析式的差為50,可求得t,可判斷④,可得出答案.【詳解】由圖象可知A,B兩城市之間的距離為300km,小帶行駛的時間為5h,而小路是在小帶出發(fā)1h后出發(fā)的,且用時3h,即比小帶早到1h,∴①②都正確;設(shè)小帶車離開A城的距離y與t的關(guān)系式為y小帶=kt,把(5,300)代入可求得k=60,∴y小帶=60t,設(shè)小路車離開A城的距離y與t的關(guān)系式為y小路=mt+n,把(1,0)和(4,300)代入可得解得∴y小路=100t-100,令y小帶=y(tǒng)小路,可得60t=100t-100,解得t=2.5,即小帶和小路兩直線的交點橫坐標(biāo)為t=2.5,此時小路出發(fā)時間為1.5h,即小路車出發(fā)1.5h后追上甲車,∴③不正確;令|y小帶-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,當(dāng)100-40t=50時,可解得t=,當(dāng)100-40t=-50時,可解得t=,又當(dāng)t=時,y小帶=50,此時小路還沒出發(fā),當(dāng)t=時,小路到達(dá)B城,y小帶=250.綜上可知當(dāng)t的值為或或或時,兩車相距50km,∴④不正確.故選C.【點睛】本題主要考查一次函數(shù)的應(yīng)用,掌握一次函數(shù)圖象的意義是解題的關(guān)鍵,特別注意t是甲車所用的時間.9、D【解析】

根據(jù)平行線分線段成比例定理及相似三角形的判定與性質(zhì)進(jìn)行分析可得出結(jié)論.【詳解】由DE∥BC,可得△ADE∽△ABC,并可得:,,,故A,B,C正確;D錯誤;故選D.【點睛】考點:1.平行線分線段成比例;2.相似三角形的判定與性質(zhì).10、A【解析】

觀察日歷中的數(shù)據(jù),用含a的代數(shù)式表示出b,c,d的值,再將其逐一代入四個選項中,即可得出結(jié)論.【詳解】解:依題意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,選項A符合題意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d,選項B不符合題意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,∴a+b+14=c+d,選項C不符合題意;D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,∴a+d=b+c,選項D不符合題意.故選:A.【點睛】考查了列代數(shù)式,利用含a的代數(shù)式表示出b,c,d是解題的關(guān)鍵.11、D【解析】

分別根據(jù)眾數(shù)、中位數(shù)、平均數(shù)、方差的定義進(jìn)行求解后進(jìn)行判斷即可得.【詳解】甲:數(shù)據(jù)7出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)為7,排序后最中間的數(shù)是7,所以中位數(shù)是7,,=4.4,乙:數(shù)據(jù)8出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)為8,排序后最中間的數(shù)是4,所以中位數(shù)是4,,=6.4,所以只有D選項正確,故選D.【點睛】本題考查了眾數(shù)、中位數(shù)、平均數(shù)、方差,熟練掌握相關(guān)定義及求解方法是解題的關(guān)鍵.12、D【解析】

正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點作答.【詳解】解:正方體的表面展開圖,相對的面之間一定相隔一個正方形,“愛”字一面相對面上的字是“陽”;故本題答案為:D.【點睛】本題主要考查了正方體相對兩個面上的文字,注意正方體的空間圖形是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】試題分析:這種立體圖形求最短路徑問題,可以展開成為平面內(nèi)的問題解決,展開后可轉(zhuǎn)化下圖,所以是直角三角形求斜邊的問題,根據(jù)勾股定理可求出葛藤長為=1(尺).故答案為1.考點:平面展開最短路徑問題14、【解析】分析:過點D作DGAB于點G.根據(jù)折疊性質(zhì),可得AE=DE=2,AF=DF,CE=1,在Rt△DCE中,由勾股定理求得,所以DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,由銳角三角函數(shù)求得,;設(shè)AF=DF=x,則FG=,在Rt△DFG中,根據(jù)勾股定理得方程=,解得,從而求得.的值詳解:如圖所示,過點D作DGAB于點G.根據(jù)折疊性質(zhì),可知△AEF△DEF,∴AE=DE=2,AF=DF,CE=AC-AE=1,在Rt△DCE中,由勾股定理得,∴DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,,;設(shè)AF=DF=x,得FG=AB-AF-GB=,在Rt△DFG中,,即=,解得,∴==.故答案為.點睛:主要考查了翻折變換的性質(zhì)、勾股定理、銳角三件函數(shù)的定義;解題的關(guān)鍵是靈活運用折疊的性質(zhì)、勾股定理、銳角三角函數(shù)的定義等知識來解決問題.15、136°.【解析】

由圓周角定理得,∠A=∠BOD=44°,由圓內(nèi)接四邊形的性質(zhì)得,∠BCD=180°-∠A=136°【點睛】本題考查了1.圓周角定理;2.圓內(nèi)接四邊形的性質(zhì).16、①②④【解析】①由a=b,得5﹣2a=5﹣2b,根據(jù)等式的性質(zhì)先將式子兩邊同時乘以-2,再將等式兩邊同時加上5,等式仍成立,所以本選項正確,②由a=b,得ac=bc,根據(jù)等式的性質(zhì),等式兩邊同時乘以相同的式子,等式仍成立,所以本選項正確,③由a=b,得,根據(jù)等式的性質(zhì),等式兩邊同時除以一個不為0的數(shù)或式子,等式仍成立,因為可能為0,所以本選項不正確,④由,得3a=2b,根據(jù)等式的性質(zhì),等式兩邊同時乘以相同的式子6c,等式仍成立,所以本選項正確,⑤因為互為相反數(shù)的平方也相等,由a2=b2,得a=b,或a=-b,所以本選項錯誤,故答案為:①②④.17、x≥1.【解析】

根據(jù)被開方數(shù)大于等于0列式計算即可得解.【詳解】根據(jù)題意得,x﹣1≥0,解得x≥1.故答案為x≥1.【點睛】本題考查函數(shù)自變量的取值范圍,知識點為:二次根式的被開方數(shù)是非負(fù)數(shù).18、1【解析】分析:根據(jù)點P的移動規(guī)律,當(dāng)OP⊥BC時取最小值2,根據(jù)矩形的性質(zhì)求得矩形的長與寬,易得該矩形的周長.詳解:∵當(dāng)OP⊥AB時,OP最小,且此時AP=4,OP=2,∴AB=2AP=8,AD=2OP=6,∴C矩形ABCD=2(AB+AD)=2×(8+6)=1.故答案為1.點睛:本題考查了動點問題的函數(shù)圖象,關(guān)鍵是根據(jù)所給函數(shù)圖象和點的運動軌跡判斷出AP=4,OP=2.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、25°【解析】

先利用正方形的性質(zhì)得OA=OC,∠AOC=90°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得OC=OF,∠COF=40°,則OA=OF,根據(jù)等腰三角形的性質(zhì)得∠OAF=∠OFA,然后根據(jù)三角形的內(nèi)角和定理計算∠OFA的度數(shù).【詳解】解:∵四邊形OABC為正方形,∴OA=OC,∠AOC=90°,∵正方形OABC繞著點O逆時針旋轉(zhuǎn)40°得到正方形ODEF,∴OC=OF,∠COF=40°,∴OA=OF,∴∠OAF=∠OFA,∵∠AOF=∠AOC+∠COF=90°+40°=130°,∴∠OFA=(180°-130°)=25°.故答案為25°.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了正方形的性質(zhì).20、(1)40人;1;(2)平均數(shù)是15;眾數(shù)16;中位數(shù)15.【解析】

(1)用13歲年齡的人數(shù)除以13歲年齡的人數(shù)所占的百分比,即可得本次接受調(diào)查的跳水運動員人數(shù);用16歲年齡的人數(shù)除以本次接受調(diào)查的跳水運動員人數(shù)即可求得m的值;(2)根據(jù)統(tǒng)計圖中給出的信息,結(jié)合求平均數(shù)、眾數(shù)、中位數(shù)的方法求解即可.【詳解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案為40,1.(2)觀察條形統(tǒng)計圖,∵,∴這組數(shù)據(jù)的平均數(shù)為15;∵在這組數(shù)據(jù)中,16出現(xiàn)了12次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為16;∵將這組數(shù)據(jù)按照從小到大的順序排列,其中處于中間的兩個數(shù)都是15,有,∴這組數(shù)據(jù)的中位數(shù)為15.【點睛】本題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,掌握平均數(shù)、眾數(shù)和中位數(shù)的定義是解題的關(guān)鍵.21、(1)1;(2).【解析】

(1)由平行線截線段成比例求得AE的長度;(2)利用平面向量的三角形法則解答.【詳解】(1)如圖,∵DE∥BC,且DE=BC,∴.又AC=6,∴AE=1.(2)∵,,∴.又DE∥BC,DE=BC,∴【點睛】考查了平面向量,需要掌握平面向量的三角形法則和平行向量的定義.22、(1)-21;(2)正確;(3)運算“※”滿足結(jié)合律【解析】

(1)根據(jù)新定義運算法則即可求出答案.(2)只需根據(jù)整式的運算證明法則a※b=b※a即可判斷.(3)只需根據(jù)整式的運算法則證明(a※b)※c=a※(b※c)即可判斷.【詳解】(1)(-3)※9=(-3+1)(9+1)-1=-21(2)a※b=(a+1)(b+1)-1b※a=(b+1)(a+1)-1,∴a※b=b※a,故滿足交換律,故她判斷正確;(3)由已知把原式化簡得a※b=(a+1)(b+1)-1=ab+a+b∵(a※b)※c=(ab+a+b)※c=(ab+a+b+1)(c+1)-1=abc+ac+ab+bc+a+b+c∵a※(b※c)=a(bcv+b+c)+(bc+b+c)+a=abc+ac+ab+bc+a+b+c∴(a※b)※c=a※(b※c)∴運算“※”滿足結(jié)合律【點睛】本題考查新定義運算,解題的關(guān)鍵是正確理解新定義運算的法則,本題屬于中等題型.23、(1)觀測點到航線的距離為3km(2)該輪船航行的速度約為40.6km/h【解析】試題分析:(1)設(shè)AB與l交于點O,利用∠DAO=60°,利用∠DAO的余弦求出OA長,從而求得OB長,繼而求得BE長即可;(2)先計算出DE=EF+DF=求出DE=5,再由進(jìn)而由tan∠CBE=求出EC,即可求出CD的長,進(jìn)而求出航行速度.試題解析:(1)設(shè)AB與l交于點O,在Rt△AOD中,∵∠OAD=60°,AD=2(km),∴OA==4(km),∵AB=10(km),∴OB=AB﹣OA=6(km),在Rt△BOE中,∠OBE=∠OAD=60°,∴BE=OB?cos60°=3(km),答:觀測點B到航線l的距離為3km;(2)∵∠OAD=60°,AD=2(km),∴OD=AD·tan60°=2,∵∠BEO=90°,BO=6,BE=3,∴OE==3,∴DE=OD+OE=5(km);CE=BE?tan∠CBE=3tan76°,∴CD=CE﹣DE=3tan76°﹣5≈3.38(km),∵5(min)=(h),∴v==12CD=12×3.38≈40.6(km/h),答:該輪船航行的速度約為40.6km/h.【點睛】本題主要考查了方向角問題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論