2025屆甘肅省武威市涼州區(qū)六壩鄉(xiāng)中學(xué)高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析_第1頁(yè)
2025屆甘肅省武威市涼州區(qū)六壩鄉(xiāng)中學(xué)高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析_第2頁(yè)
2025屆甘肅省武威市涼州區(qū)六壩鄉(xiāng)中學(xué)高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析_第3頁(yè)
2025屆甘肅省武威市涼州區(qū)六壩鄉(xiāng)中學(xué)高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析_第4頁(yè)
2025屆甘肅省武威市涼州區(qū)六壩鄉(xiāng)中學(xué)高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆甘肅省武威市涼州區(qū)六壩鄉(xiāng)中學(xué)高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知銳角的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若向量,,,則的最小值為()A. B.C. D.2.已知橢圓=1(a>b>0)的右焦點(diǎn)為F,橢圓上的A,B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,|FA|=2|FB|,且·≤a2,則該橢圓離心率的取值范圍是()A.(0,] B.(0,]C.,1) D.,1)3.某次射擊比賽中,某選手射擊一次擊中10環(huán)的概率是,連續(xù)兩次均擊中10環(huán)的概率是,已知某次擊中10環(huán),則隨后一次擊中10環(huán)的概率是A. B.C. D.4.設(shè)變量x,y滿足約束條件則目標(biāo)函數(shù)的最小值為()A.3 B.1C.0 D.﹣15.已知,,則的最小值為()A. B.C. D.6.(文科)已知點(diǎn)為曲線上的動(dòng)點(diǎn),為圓上的動(dòng)點(diǎn),則的最小值是A.3 B.5C. D.7.圓錐曲線具有豐富的光學(xué)性質(zhì),從橢圓的一個(gè)焦點(diǎn)發(fā)出的光線,經(jīng)過(guò)橢圓反射后,反射光線經(jīng)過(guò)橢圓的另一個(gè)焦點(diǎn).直線l:與橢圓C:相切于點(diǎn)P,橢圓C的焦點(diǎn)為,,由光學(xué)性質(zhì)知直線,與l的夾角相等,則的角平分線所在的直線的方程為()A. B.C. D.8.若函數(shù)單調(diào)遞增,則實(shí)數(shù)a的取值范圍為()A. B.C. D.9.圓與圓的位置關(guān)系為()A.內(nèi)切 B.相交C.外切 D.外離10.已知是虛數(shù)單位,則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限11.若函數(shù)在區(qū)間上有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.12.在直三棱柱中,,且,點(diǎn)是棱上的動(dòng)點(diǎn),則點(diǎn)到平面距離的最大值是()A. B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則實(shí)數(shù)m的值為______.14.若關(guān)于的不等式恒成立,則實(shí)數(shù)的取值范圍是______.15.已知雙曲線C的方程為,,,雙曲線C上存在一點(diǎn)P,使得,則實(shí)數(shù)a的最大值為___________.16.若x,y滿足約束條件,則的最大值為_________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)求的導(dǎo)數(shù);(2)求函數(shù)的圖象在點(diǎn)處的切線方程.18.(12分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)若對(duì)任意的,都有成立,求的取值范圍19.(12分)已知拋物線的焦點(diǎn),點(diǎn)在拋物線上.(1)求;(2)過(guò)點(diǎn)向軸作垂線,垂足為,過(guò)點(diǎn)的直線與拋物線交于兩點(diǎn),證明:為直角三角形(為坐標(biāo)原點(diǎn)).20.(12分)中,角A,B,C所對(duì)的邊分別為.已知.(1)求的值;(2)求的面積.21.(12分)已知函數(shù)的圖像在處的切線斜率為,且時(shí),有極值.(1)求的解析式;(2)求在上的最大值和最小值.22.(10分)已知圓,直線(1)證明直線與圓C一定有兩個(gè)交點(diǎn);(2)求直線與圓相交的最短弦長(zhǎng),并求對(duì)應(yīng)弦長(zhǎng)最短時(shí)的直線方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由,得到,根據(jù)正弦、余弦定理定理化簡(jiǎn)得到,化簡(jiǎn)得到,再結(jié)合基本不等式,即可求解.【詳解】由題意,向量,,因?yàn)?,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因?yàn)椋裕?,所以,因?yàn)槭卿J角三角形,且,可得,解得,所以,所以,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,故的最小值為.故選:C2、B【解析】如圖設(shè)橢圓的左焦點(diǎn)為E,根據(jù)題意和橢圓的定義可知,利用余弦定理求出,結(jié)合平面向量的數(shù)量積計(jì)算即可.【詳解】由題意知,如圖,設(shè)橢圓的左焦點(diǎn)為E,則,因?yàn)辄c(diǎn)A、B關(guān)于原點(diǎn)對(duì)稱,所以四邊形為平行四邊形,由,得,,在中,,所以,由,得,整理,得,又,所以.故選:B3、B【解析】根據(jù)條件概率的計(jì)算公式,得所求概率為,故選B.4、C【解析】線性規(guī)劃問題,作出可行域后,根據(jù)幾何意義求解【詳解】作出可行域如圖所示,,數(shù)形結(jié)合知過(guò)時(shí)取最小值故選:C5、B【解析】將代數(shù)式展開,然后利用基本不等式可求出該代數(shù)式的最小值.【詳解】,,由基本不等式得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.因此,的最小值為.故選B.【點(diǎn)睛】本題考查利用基本不等式求最值,在利用基本不等式時(shí)要注意“一正、二定、三相等”條件的成立,考查計(jì)算能力,屬于中等題.6、A【解析】數(shù)形結(jié)合分析可得,當(dāng)時(shí)能夠取得的最小值,根據(jù)點(diǎn)到圓心的距離減去半徑求解即可.【詳解】由對(duì)勾函數(shù)的性質(zhì),可知,當(dāng)且僅當(dāng)時(shí)取等號(hào),結(jié)合圖象可知當(dāng)A點(diǎn)運(yùn)動(dòng)到時(shí)能使點(diǎn)到圓心的距離最小,最小為4,從而的最小值為.故選:A【點(diǎn)睛】本題考查兩動(dòng)點(diǎn)間距離的最值問題,考查轉(zhuǎn)化思想與數(shù)形結(jié)合思想,屬于中檔題.7、A【解析】先求得點(diǎn)坐標(biāo),然后求得的角平分線所在的直線的方程.【詳解】,直線的斜率為,由于直線,與l的夾角相等,則的角平分線所在的直線的斜率為,所以所求直線方程為.故選:A8、D【解析】根據(jù)函數(shù)的單調(diào)性,可知其導(dǎo)數(shù)在R上恒成立,分離參數(shù),即可求得答案.【詳解】由題意可知單調(diào)遞增,則在R上恒成立,可得恒成立,當(dāng)時(shí),取最小值-1,故,故選:D9、C【解析】將圓的一般方程化為標(biāo)準(zhǔn)方程,根據(jù)圓心距和半徑的關(guān)系,判斷兩圓的位置關(guān)系.【詳解】圓的標(biāo)準(zhǔn)方程為,圓的標(biāo)準(zhǔn)方程為,兩圓的圓心距為,即圓心距等于兩圓半徑之和,故兩圓外切,故選:C.10、D【解析】根據(jù)復(fù)數(shù)的幾何意義即可確定復(fù)數(shù)所在象限【詳解】復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第四象限故選:D11、D【解析】由題意,即在區(qū)間上有兩個(gè)異號(hào)零點(diǎn),令,利用函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系判斷單調(diào)性,數(shù)形結(jié)合即可求解【詳解】解:由題意,即在區(qū)間上有兩個(gè)異號(hào)零點(diǎn),構(gòu)造函數(shù),則,令,得,令,得,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,又時(shí),,時(shí),,且,所以,即,所以的范圍故選:D12、D【解析】建立空間直角坐標(biāo)系,設(shè)出點(diǎn)的坐標(biāo),運(yùn)用點(diǎn)到平面的距離公式,求出點(diǎn)到平面距離的最大值.【詳解】解:以為原點(diǎn),分別以,,所在直線為,,軸建立如圖所示的空間直角坐標(biāo)第,則,,,設(shè)點(diǎn),故,,.設(shè)設(shè)平面的法向量為,則即,取,則.所以點(diǎn)到平面距離.當(dāng),即時(shí),距離有最大值為.故選:D.【點(diǎn)睛】本題考查空間內(nèi)點(diǎn)到面的距離最值問題,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分別求出橢圓和拋物線的焦點(diǎn)坐標(biāo)即可出值.【詳解】由橢圓方程可知,,,則,即橢圓的右焦點(diǎn)的坐標(biāo)為,拋物線的焦點(diǎn)坐標(biāo)為,∵拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,∴,即,故答案為:.14、【解析】設(shè)由題可知,當(dāng)時(shí),可得適合題意,當(dāng)時(shí),可求函數(shù)的最小值即得,當(dāng)時(shí)不合題意,即得.【詳解】設(shè),由題可知,∴,當(dāng)時(shí),,適合題意,所以,當(dāng)時(shí),令,則,此時(shí)時(shí),,單調(diào)遞減,,,單調(diào)遞增,∴,又,∴,∴,即,解得,當(dāng)時(shí),時(shí),,,故的值有正有負(fù),不合題意;綜上,實(shí)數(shù)的取值范圍是.故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查不等式恒成立求參數(shù)的取值范圍,設(shè)由題可知,當(dāng)時(shí),利用導(dǎo)數(shù)可求函數(shù)的最小值,結(jié)合,可得,進(jìn)而通過(guò)解,即得.15、2【解析】設(shè)出,根據(jù)條件推出在圓上運(yùn)動(dòng),根據(jù)題意要使雙曲線和圓有交點(diǎn),則得答案.【詳解】設(shè)點(diǎn),由得:,所以,化簡(jiǎn)得:,即滿足條件的點(diǎn)在圓上運(yùn)動(dòng),又點(diǎn)存在于上,故雙曲線與圓有交點(diǎn),則,即實(shí)數(shù)a的最大值為2,故答案為:216、3【解析】根據(jù)題意,畫出可行域,找出最優(yōu)解,即可求解.【詳解】根據(jù)題意,不等式組所表示的可行域如圖陰影部分,由圖易知,取最大值的最優(yōu)解為,故.故答案為:3三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)利用基本初等函數(shù)的導(dǎo)數(shù)公式及求導(dǎo)法則直接計(jì)算作答.(2)求出,再利用導(dǎo)數(shù)的幾何意義求出切線方程作答.【小問1詳解】函數(shù)定義域?yàn)?,所以函?shù).【小問2詳解】由(1)知,,而,于是得,即,所以函數(shù)的圖象在點(diǎn)處的切線方程是.18、(1)答案見解析;(2).【解析】(1)求,分別討論不同范圍下的正負(fù),分別求單調(diào)性;(2)由(1)所求的單調(diào)性,結(jié)合,分別求出的范圍再求并集即可.【詳解】解:(1)由已知定義域?yàn)?,?dāng),即時(shí),恒成立,則在上單調(diào)遞增;當(dāng),即時(shí),(舍)或,所以在上單調(diào)遞減,在上單調(diào)遞增.所以時(shí),在上單調(diào)遞增;時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(2)由(1)可知,當(dāng)時(shí),在上單調(diào)遞增,若對(duì)任意的恒成立,只需,而恒成立,所以成立;當(dāng)時(shí),若,即,則在上單調(diào)遞增,又,所以成立;若,則在上單調(diào)遞減,在上單調(diào)遞增,又,所以,,不滿足對(duì)任意的恒成立.所以綜上所述:.19、(1)(2)證明見解析【解析】(1)點(diǎn)代入即可得出拋物線方程,根據(jù)拋物線的定義即可求得.(2)由題,設(shè)直線的方程為:,與拋物線方程聯(lián)立,可得,利用韋達(dá)定理證得即可得出結(jié)論.【小問1詳解】點(diǎn)在拋物線上.,則,所以.【小問2詳解】證明:由題,設(shè)直線的方程為:,點(diǎn)聯(lián)立方程,消得:,由韋達(dá)定理有,由,所以,所以,所以,所以為直角三角形.20、(1);(2).【解析】(1)根據(jù)求出,根據(jù)求出,根據(jù)正弦定理求出;(2)先求出,再利用面積公式即可求出.【詳解】(1)在中,由題意知,又因?yàn)椋?,由正弦定理可?(2)由得,由,得.所以.因此,的面積.【點(diǎn)睛】本題考查正弦定理和三角形面積公式的應(yīng)用,屬于中檔題.21、(1);(2)最大值為,最小值為.【解析】(1)由題得①,②,解方程組即得解;(2)令解得或,再列表得解.【小問1詳解】解:求導(dǎo)得,因?yàn)樵诔龅那芯€斜率為,則,即①因?yàn)闀r(shí),有極值,則.即②由①②聯(lián)立得,所以.【小問2詳解】解:由(1),令解得或,列表如下:極大值極小值所以,在[-3,2]上的最大值為,最小值為.22、(1)證明見解析(2)答案見解析【解析】(1)由,變

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論