版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省黃岡八模2025屆數學高二上期末教學質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓與圓,則兩圓的位置關系是()A.外切 B.內切C.相交 D.相離2.下列關于命題的說法錯誤的是A.命題“若,則”的逆否命題為“若,則”B.“”是“函數在區(qū)間上為增函數”的充分不必要條件C.命題“,使得”的否定是“,均有”D.“若為的極值點,則”的逆命題為真命題3.已知分別是等差數列的前項和,且,則()A. B.C. D.4.在平面直角坐標系xOy中,過x軸上的點P分別向圓和圓引切線,記切線長分別為.則的最小值為()A.2 B.3C.4 D.55.已知為橢圓的兩個焦點,過的直線交橢圓于兩點,若,則()A. B.C. D.6.已知直線,,,則m值為()A. B.C.3 D.107.直線的傾斜角為()A.1 B.-1C. D.8.校慶當天,學校需要在靠墻的位置用圍欄圍起一個面積為200平方米的矩形場地.用來展示校友的書畫作品.靠墻一側不需要圍欄,則圍欄總長最小需要()米A.20 B.40C. D.9.一道數學試題,甲、乙兩位同學獨立完成,設命題是“甲同學解出試題”,命題是“乙同學解出試題”,則命題“至少一位同學解出試題”可表示為()A. B.C. D.10.“”是“方程表示雙曲線”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.“”是“直線與直線垂直”的A.充分必要條件 B.充分非必要條件C.必要不充分條件 D.既不充分也不必要條件12.雙曲線的焦點坐標是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若隨機變量,則______.14.已知雙曲線:的右焦點為,過點向雙曲線的一條漸近線引垂線,垂足為,交另一條漸近線于,若,則雙曲線的漸近線方程為__________15.古希臘數學家阿波羅尼斯發(fā)現(xiàn):平面上到兩定點A,B的距離之比為常數的點的軌跡是—個圓心在直線上的圓.該圓被稱為阿氏圓,如圖,在長方體中,,點E在棱上,,動點P滿足,若點P在平面內運動,則點P對應的軌跡的面積是___________;F為的中點,則三棱錐體積的最小值為___________.16.已知雙曲線M的中心在原點,以坐標軸為對稱軸.從以下三個條件中任選兩個條件,并根據所選條件求雙曲線M的標準方程.①一個焦點坐標為;②經過點;③離心率為.你選擇的兩個條件是___________,得到的雙曲線M的標準方程是___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)(1)求函數的單調區(qū)間.(2)用向量方法證明:已知直線l,a和平面,,,,求證:.18.(12分)已知數列的前n項和為,且(1)證明數列是等比數列,并求出數列的通項公式;(2)在與之間插入n個數,使得包括與在內的這個數成等差數列,其公差為,求數列的前n項和19.(12分)已知圓C的圓心在直線上,圓心到x軸的距離為2,且截y軸所得弦長為(1)求圓C的方程;(2)若圓C上至少有三個不同的點到直線的距離為,求實數k的取值范圍20.(12分)已知函數.(1)當時,求函數的極值;(2)若對,恒成立,求的取值范圍.21.(12分)如圖,在梯形中,,四邊形為矩形,且平面,.(1)求證:;(2)點在線段(不含端點)上運動,設直線與平面所成角為,求的取值范圍.22.(10分)已知拋物線C的焦點為,N為拋物線上一點,且(1)求拋物線C的方程;(2)過點F且斜率為k的直線l與C交于A,B兩點,,求直線l的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】求得兩圓的圓心和半徑,再根據圓心距與半徑之和半徑之差的關系,即可判斷位置關系.【詳解】對圓,其圓心,半徑;對圓,其圓心,半徑;又,故兩圓外切.故選:A.2、D【解析】根據命題及其關系、充分條件與必要條件、導數在函數中應用、全稱量詞與存在量詞等相關知識一一判斷可得答案.【詳解】解:A,由原命題與逆否命題的構成關系,可知A正確;B,當a=2>1時,函數在定義域內是單調遞增函數,當函數定義域內是單調遞增函數時,a>1.所以B正確;C,由于存在性命題的否定是全稱命題,所以",使得"的否定是",均有,所以C正確;D,的根不一定是極值點,例如:函數,則=0,即x=0就不是極值點,所以“若為的極值點,則”的逆命題為假命題,故選D.【點睛】本題主要考查命題及其關系、充分條件與必要條件、導數在函數中應用、全稱量詞與存在量詞等相關知識,需牢記并靈活運用相關知識.3、D【解析】利用及等差數列的性質進行求解.【詳解】分別是等差數列的前項和,故,且,故,故選:D4、D【解析】利用兩點間的距離公式,將切線長的和轉化為到兩圓心的距離和,利用三點共線距離最小即可求解.詳解】,圓心,半徑,圓心,半徑設點P,則,即到與兩點距離之和的最小值,當、、三點共線時,的和最小,即的和最小值為.故選:D【點睛】本題考查了兩點間的距離公式,需熟記公式,屬于基礎題.5、C【解析】根據橢圓的定義可得,由即可求解.【詳解】由,可得根據橢圓的定義,所以.故選:C6、C【解析】根據兩直線垂直的充要條件得到方程,解得即可;【詳解】解:因為,且,所以,解得;故選:C7、C【解析】根據直線斜率的定義即可求解.【詳解】,斜率為1,則傾斜角為.故選:C.8、B【解析】在出矩形中,設,得到,結合基本不等式,即可求解【詳解】如圖所示,在矩形中,設,則,根據題意,可得矩形圍欄總長為因為,可得,當且僅當時,即時,等號成立,即圍欄總長最小需要米.故選:B.9、D【解析】根據“或命題”的定義即可求得答案.【詳解】“至少一位同學解出試題”的意思是“甲同學解出試題,或乙同學解出試題”.故選:D.10、A【解析】方程表示雙曲線則,解得,是“方程表示雙曲線”的充分不必要條件.故選:A11、B【解析】先由兩直線垂直求出的值,再由充分條件與必要條件的概念,即可得出結果.【詳解】因為直線與直線垂直,則,即,解得或;因此由“”能推出“直線與直線垂直”,反之不能推出,所以“”是“直線與直線垂直”的充分非必要條件.故選B【點睛】本題主要考查命題充分不必要條件的判定,熟記充分條件與必要條件的概念,以及兩直線垂直的判定條件即可,屬于??碱}型.12、B【解析】根據雙曲線的方程,求得,結合雙曲線的幾何性質,即可求解.【詳解】由題意,雙曲線,可得,所以,且雙曲線的焦點再軸上,所以雙曲線的焦點坐標為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據給定條件利用二項分布的期望公式直接計算作答.【詳解】因為隨機變量,所以.故答案:214、【解析】由題意得雙曲線的右焦點F(c,0),設一漸近線OM的方程為,則另一漸近線ON的方程為.設,∵,∴,∴,解得∴點M的坐標為,又,∴,整理得,∴雙曲線的漸近線方程為答案:點睛:(1)已知雙曲線的標準方程求雙曲線的漸近線方程時,只要令雙曲線的標準方程中“1”為“0”就得到兩漸近線方程,即方程就是雙曲線的兩條漸近線方程(2)求雙曲線的漸進線方程的關鍵是求出的關系,并根據焦點的位置確定出漸近線的形式,并進一步得到其方程15、①.②.【解析】建立空間直角坐標系,根據,可得對應的軌跡方程;先求的面積,其是固定值,要使體積最小,只需求點到平面的距離的最小值即可.【詳解】分別以為軸建系,設,而,,,,.由,有,化簡得對應的軌跡方程為.所以點P對應的軌跡的面積是.易得的三個邊即是邊長為為的等邊三角形,其面積為,,設平面的一個法向量為,則有,可取平面的一個法向量為,根據點的軌跡,可設,,所以點到平面的距離,所以故答案為:;16、①.①②或①③或②③②.或或【解析】選①②,根據焦點坐標及頂點坐標直接求解,選①③,根據焦點坐標及離心率求出即可得解,選②③,可由頂點坐標及離心率得出,即可求解.【詳解】選①②,由題意則,,,雙曲線的標準方程為,故答案為:①②;,選①③,由題意,,,,雙曲線的標準方程為,選②③,由題意知,,,雙曲線的標準方程為.故答案為:①②;或①③;或②③;.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)的單調減區(qū)間為和,單調增區(qū)間為;(2)證明見解析.【解析】(1)求出導函數,由得增區(qū)間,由得減區(qū)間;(2)說明直線方向向量與平行的法向量垂直后可得【詳解】(1)解:定義域為R,,,解得,.當或時,,當時,.所以的單調減區(qū)間為和,單調增區(qū)間為.(2)證明:在直線a上取非零向量,因為,所以是直線l的方向向量,設是平面的一個法向量,因為,所以.又,所以.18、(1)證明見解析,(2)【解析】(1)根據公式得到,得到,再根據等比數列公式得到答案.(2)根據等差數列定義得到,再利用錯位相減法計算得到答案.【小問1詳解】,當時,,得到;當時,,兩式相減得到,整理得到,即,故,數列是首項為,公比為的等比數列,,即,驗證時滿足條件,故.【小問2詳解】,故,,,兩式相減得到:,整理得到:,故.19、(1)或;(2).【解析】(1)設圓心為,由題意及圓的弦長公式即可列方程組,解方程組即可;(2)由題意可將問題轉化為圓心到直線l:的距離,解不等式即可.【詳解】解:(1)設圓心為,半徑為r,根據題意得,解得,所以圓C的方程為或(2)由(1)知圓C的圓心為或,半徑為,由圓C上至少有三個不同的點到直線l:的距離為,可知圓心到直線l:的距離即,所以,解得所以直線l斜率的取值范圍為20、(1)極小值為,無極大值;(2).【解析】(1)對函數進行求導、列表、判斷函數的單調性,最后根據函數極值的定義進行求解即可;(2)對進行常變量分離,然后構造新函數,對新函數進行求導,判斷其單調性,進而求出新函數的最值,最后根據題意求出的取值范圍即可.【詳解】(1)函數的定義域為,當時,.由,得.當變化時,,的變化情況如下表-0+單調遞減極小值單調遞增所以在上單調遞減,上單調遞增,所以函數的極小值為,無極大值.(2)對,恒成立,即對,恒成立.令,則.由得,當時,,單調遞增;當時,,單調遞減,所以,因此.所以的取值范圍是.【點睛】本題考查了利用導數研究函數的單調性、極值、最值,考查了構造函數法、常變量分離法,考查了數學運算能力和分類討論思想.21、(1)證明見解析(2)【解析】(1)過作,垂足為,利用正余弦定理可證,再利用線線垂足證明線面垂直,進而可得證;(2)以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系,利用坐標法求線面夾角的正弦值.【小問1詳解】證明:由已知可得四邊形是等腰梯形,過作,垂足為,則,在中,,則,可得,在中,由余弦定理可得,,則,,又平面,平面,,,,平面,平面,又為矩形,,則平面,而平面,;【小問2詳解】平面,且,以為坐標原點,分別以,,所在直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇省泰州市姜堰區(qū)2024-2025學年七年級上學期期中生物試題(含答案)
- 2024年度云南省高校教師資格證之高等教育法規(guī)綜合練習試卷B卷附答案
- 安徽省合肥市2024-2025學年九年級上學期期中物理模擬試卷二(含答案)
- 阜陽師范大學《戰(zhàn)略管理》2023-2024學年第一學期期末試卷
- 阜陽師范大學《幼兒歌曲彈唱二》2022-2023學年第一學期期末試卷
- 阜陽師范大學《投資學專業(yè)導論》2021-2022學年第一學期期末試卷
- 2023年高密度聚乙烯土工膜投資申請報告
- 福建師范大學協(xié)和學院《跨境電子商務理論與實務》2021-2022學年第一學期期末試卷
- 福建師范大學《運動技能學習與控制》2022-2023學年第一學期期末試卷
- 2024年二級建造師-法規(guī)-學霸筆記
- 心理減壓及放松訓練
- 如何搞定你的客戶-
- 寧夏特色美食文化介紹推介PPT圖文課件
- 學生對學校滿意度評價表
- 壓縮機輔助系統(tǒng)試運
- 環(huán)磷酰胺原料藥相關項目投資計劃書
- 部編版語文四年級上冊第五單元【集體備課】
- 職高新思政-第五課:推動高質量發(fā)展
- 天然氣超聲波脫水技術
- 機械制造課程設計-《機械制造工藝學》課程設計
- 疲勞駕駛安全教育內容
評論
0/150
提交評論