




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
TowardsData-EfficientDeepLearningwithMeta-LearningandSymmetries
JinXu
BalliolCollege
UniversityofOxford
AthesissubmittedforthedegreeofDoctorofPhilosophyinStatistics
Trinity2023
2
Acknowledgements
Firstandforemost,Iwanttoexpressmydeepgratitudetomysupervisors,Prof.Yee
WhyeTehandDr.TomRainforth.Theirunwaveringsupport,carefulguidance,andconstantinspirationhavebeeninvaluablethroughoutmyPhDjourney.Ithasbeenaprivilegetobementoredbythem,whoIregardasresearchrolemodels.Theirdepthandbreadthofknowledgehavebeenbothhumblingandenlightening.SpecialacknowledgementgoestoYeeWhye,whohasalwaysbeenconsiderateandreadytohelpintoughtimes.MyheartfeltthanksgotoTomforhisguidanceduringthechallengingtimesbroughtonbythepandemic.
IwouldliketoextendmygratitudetoallmycollaboratorsHyunjikKim,Jean-FrancoisTon,AdamKosiorek,EmilienDupont,andKasparM?rtens.TheirexpertiseandfeedbackhavebeencrucialinimprovingmyworkandIlearnagreatdealfromthem.AbigthankyoutoProf.RyanAdamsfromPrincetonUniversityandtomyinternshiphosts,JamesHensmanandMaxCrociatMicrosoftResearch.TheirmentorshipoutsideofmyPhDlifehasbeenanindispensablepartofmyresearchexperience.
Moreover,Ifeelextremelyfortunatetobesurroundedbyamazingandcaringfriendswhosenamesarenotpossibletoenumeratehere.AmongthemareEmilienDupont,Jean-FrancoisTon,CharlineLeLan,BobbyHe,SheheryarZaidi,QinyiZhang,GuneetDhillon,AndrewCampbell,ChrisWilliams,CarloAlfano,FaaizTaufiq,AnnaMenacherandothersfromourlovelyoffice1.17,HanwenXing,YanzhaoYang,NingMiao,ChaoZhang,Yutonglu,YixuanHe,XiLin,YuanZhou,FanWu,BohaoYaofromthedepartmentofstatistics,DunhongJin,SihanZhou,SijiaYao,HuiningYang,KevinWang,NataliaHong,HangYuan,KangningZhang,ChengyangWangandmanyothersfromotherdepartmentsatOxford,DenizOktay,SulinLiu,JennyZhanandothersfromPrincetonUniversity,internshippeersatMicrosoftResearchincludingAlexanderMeulemans,SalehAshkboosfromETH.
Aspecialthankstoalluniversityanddepartmentstaff,especiallyChrisCullenforhiskindandpatientsupportduringdifficulttimes,andtoJoannaStoneham,Stuart
3
McRobert,andotherswhoensuredasmoothPhDexperience.
Finally,aboveall,mydeepestthanksgotoYifanYuforherloveandcompanionship.SheimmenselyenrichedmytimeinOxford,bringingcolourandjoytomylife.Additionally,IameternallygratefultomyparentsChengxiangXuandFengChenforgivingmethefreedomtopursuemypassionsandfortheirunquestioningsupportthroughoutthisjourney.
4
Abstract
Recentadvancesindeeplearninghavebeensignificantlypropelledbytheincreasingavailabilityofdataandcomputationalresources.Whiletheabundanceofdataenablesmodelstoperformwellincertaindomains,therearereal-worldapplications,suchasinthemedicalfield,wherethedataisscarceordifficulttocollect.Furthermore,therearealsoscenarioswherethelargedatasetisbetterviewedaslotsofrelatedsmalldatasets,andthedatabecomesinsufficientforthetaskassociatedwithoneofthesmalldatasets.Itisalsonoteworthythathumanintelligenceoftenrequiresonlyahandfulofexamplestoperformwellonnewtasks,emphasizingtheimportanceofdesigningdata-efficientAIsystems.Thisthesisdelvesintotwostrategiestoaddressthischallenge:meta-learningandsymmetries.Meta-learningapproachesthedata-richenvironmentasacollectionofmanysmall,individualdatasets.Eachofthesesmalldatasetsrepresentsadistincttask,yetthereisunderlyingsharedknowledgebetweenthem.Harnessingthissharedknowledgeallowsforthedesignoflearningalgorithmsthatcanefficientlyaddressnewtaskswithinsimilardomains.Incomparison,symmetryisaformofdirectpriorknowledge.Byensuringthatmodels’predictionsremainconsistentdespiteanytransformationtotheirinputs,thesemodelsenjoybettersampleefficiencyandgeneralization.
Inthesubsequentchapters,wepresentnoveltechniquesandmodelswhichallaimatimprovingthedataefficiencyofdeeplearningsystems.Firstly,wedemonstratethesuccessofencoder-decoderstylemeta-learningmethodsbasedonConditionalNeuralProcesses(cnps).Secondly,weintroduceanewclassofexpressivemeta-learnedstochasticprocessmodelswhichareconstructedbystackingsequencesofneuralparameterisedMarkovtransitionoperatorsinfunctionspace.Finally,weproposegroupequivariantsubsampling/upsamplinglayerswhichtacklesthelossofequivarianceinconventionalsubsampling/upsamplinglayers.Theselayerscanbeusedtoconstructend-to-endequivariantmodelswithimproveddata-efficiency.
i
Contents
1Introduction
1
1.1Motivation
1
1.2Thesisoutline
3
1.3Papers
4
2Background
6
2.1Meta-learning
6
2.1.1Conventionalsupervisedlearningandmeta-learning
6
2.1.2Differentviewsofmeta-learning
8
2.1.3Commonapproachestometa-learning
10
2.2Neuralprocesses
11
2.2.1Stochasticprocesses
12
2.2.2Neuralprocessesasstochasticprocesses
12
2.2.3Neuralprocesstrainingobjectives
13
2.2.4Ameta-learningperspective
14
2.3Symmetriesindeeplearning
15
2.3.1Group,cosetandquotientspace
15
2.3.2Grouphomomorphism,groupactionsandgroupequivariance
.16
2.3.3Homogeneousspacesandliftingfeaturemaps
16
2.3.4FeaturemapsinG-CNNs
17
2.3.5Groupequivariantneuralnetworks
18
3MetaFun:Meta-LearningwithIterativeFunctionalUpdates
20
3.1Introduction
20
3.2MetaFun
22
3.2.1Learningfunctionaltaskrepresentation
23
3.2.2MetaFunforregressionandclassification
26
3.3Relatedwork
27
ii
3.4Experiments
31
3.4.11-Dfunctionregression
31
3.4.2Classification:miniImageNetandtieredImageNet
33
3.4.3Ablationstudy
36
3.5Conclusionsandfuturework
37
3.6Supplementarymaterials
38
3.6.1Functionalgradientdescent
38
ReproducingkernelHilbertspace
38
Functionalgradients
39
Functionalgradientdescent
40
3.6.2Experimentaldetails
40
4DeepStochasticProcessesviaFunctionalMarkovTransitionOpera-
tors
44
4.1Introduction
44
4.2Background
46
4.3Markovneuralprocesses
47
4.3.1AmoregeneralformofNeuralProcessdensityfunctions
47
4.3.2Markovchainsinfunctionspace
48
4.3.3Parameterisation,inferenceandtraining
49
4.4Relatedwork
52
4.5Experiments
54
4.5.11Dfunctionregression
54
4.5.2Contextualbandits
55
4.5.3Geologicalinference
56
4.6Discussion
58
4.7Supplementarymaterials
59
4.7.1Proofs
59
60
4.7.2Implementationdetails
63
4.7.3Data
63
Modelarchitecturesandhyperparameters
65
Computationalcostsandresources
66
4.7.4Broaderimpacts
67
iii
5GroupEquivariantSubsampling
68
5.1Introduction
68
5.2Equivariantsubsamplingandupsampling
70
5.2.1TranslationequivariantsubsamplingforCNNs
70
5.2.2Groupequivariantsubsamplingandupsampling
72
5.2.3ConstructingΦ
75
5.3Application:Groupequivariantautoencoders
75
5.4Relatedwork
77
5.5Experiments
79
5.5.1Basicproperties:Equivariance,disentanglementandout-of-
distributiongeneralization
80
5.5.2Singleobject
81
5.5.3Multipleobjects
82
5.6Conclusions,limitationsandfuturework
83
5.7Supplementarymaterials
84
5.7.1Equivariantsubsamplingandupsampling
84
ConstructingΦ
84
Multiplesubsamplinglayers
85
5.7.2Groupequivariantautoencoders
87
5.7.3Proofs
88
5.7.4Implementationdetails
93
Data
93
Modelarchitectures
94
Hyperparameters
95
Computationalresources
95
6ConclusionsandFutureOutlook
96
Bibliography
99
1
Chapter1
Introduction
1.1Motivation
Recentbreakthroughsindeeplearningcanbelargelyattributedtothevastamountofdataavailableandtheadvancementofcomputationalresources[
Dengetal.,
2009,
Rainaetal.,
2009,
Silveretal.,
2016,
Jumperetal.,
2021,
Brownetal.,
2020a]
.Whiletrainingonlargedatasetsenablesdeeplearningmodelstoexcelincertaintasks,manyreal-worldapplicationsonlyprovidelimiteddataforaspecifictask.Forinstance,inmedicalfields,obtainingdata,especiallyforrarediseases,ischallengingandoftenexpensive.Indrugdevelopmentorrecommendationsystems,therewillalwaysbeinsufficientdatafornewdrugs/users,eventhoughabundantdataexistsforotherdrugsorusers.Therefore,toapplydeeplearningtothesefields,itisvitaltodevelopsystemsthataredata-efficient.Moreover,foradvancedAIsystems,data-efficiencycanbeacrucialingredient:Firstly,AIsystemsshouldbeabletogeneralizebeyondspecificdatadistributionswithoutrelyingondata;forinstance,animagerecognitionsystemshouldrecognizeobjectsregardlessoftheirpositionororientation.Secondly,humanintelligencecanoftensolvenewtaskswithjustafewexamples.Thus,forAItoemulatehuman-likeintelligence,itshouldalsohavesuchcapability.
FromaBayesianperspective,learninginvolvesupdatingourbeliefsaboutamodel(representedbyθ)giventhedata,i.e.p(θ|Ddata).Foramodeltolearnefficientlyfromasmallamountofdata,it’simportanttostartwithagoodinitialguessor"prior"p(θ).Inthispaper,welookattwodirectionstoobtainsuchpriorfordata-efficientlearning:Thefirstismeta-learning,whichlearnstheprior(orthesharedknowledge)from
2
similartasks.Itcanbeunderstoodas"learningtolearnmoreefficiently".Thesecondissymmetriesindeeplearning,whichservesasaknownpriorforcertainproblems.Symmetry,afundamentalconceptinphysics,representsaformofpriorknowledgethatisubiquitouslyobservedthroughoutourphysicalworld.
Meta-learningtacklesaspecificscenarioinwhichthevastpoolofdatacanbeviewedasmanysmalldatasets,eachrepresentingadistincttask.Yet,thesetaskscontainunderlyingsharedknowledgethatcanbeharnessedtoaddressnewtaskswithinthesamecategory.Thisscenarioisprevalentinmanyapplications.Take,forinstance,anonlineretailcompanywithdatafromcustomersworldwide.Thedataassociatedwitheachuseristypicallysparse.Inthiscontext,predictingbehavioursforeachuserconstitutesanindividualtask,butpatternsamongdifferentusersoftenexhibitsimilarities.Meta-learningalgorithmsaredesignedtohandlesuchcircumstances.Thegoalofmeta-learningistolearndata-efficientlearningalgorithmsthatcanlaterbeappliedtoaparticulartask.Thetrainingdataformeta-learningcomprisesnumerousrelatedtasks,eachwithalimitedsetofdatapoints.Afterthemeta-learningphase,thelearnedlearningalgorithmscansolveanewtaskinadata-efficientmanner.Incontrast,theaimofconventionalsupervisedlearningisjusttolearnapredictivemodel.
Meta-learningproblemscanbetackledfromvariousperspectives,andtheseap-proachescanbeunderstoodthroughdifferentviewpointssuchasoptimization-basedap-proaches[
RaviandLarochelle,
2016,
Finnetal.,
2017a
],metric-basedapproaches[
Koch,
2015
,
Vinyalsetal.,
2016,
Sungetal.,
2018,
Snelletal.,
2017],andmodel-based
approaches[
Santoroetal.,
2016,
Mishraetal.,
2018,
Garneloetal.,
2018a
],amongothers.Notethattheseviewsarenotexclusive.Forexample,methodssuchasprototypicalNetworks[
Snelletal.,
2017
],MAML[
Finnetal.,
2017a
],ML-PIP[
Gordon
etal.
,
2018
]etc.canbereformulatedunderamodel-basedframeworkthatusesanencoder-decodersetup.Inthissetup,theencoderproducesataskrepresentationusingtrainingdata,andthedecoderthenmakespredictionsbasedonthetaskrep-resentation.Theseapproachestransformthemeta-learningchallengetoresemblearegularlearningprobleminvolvingsequences,anditisalsomorecomputationallyefficientifnogradientcomputationisinvolvedinboththeencoderandthedecoderlikecnp-typemodels[
Garneloetal.,
2018a]
.OurstudyinChapter
3
explicitlyadoptsthisencoder-decoderframeworkformeta-learning.Byusingafunctionaltaskrepresentation,anditerativelyupdatingtherepresentationdirectlyinfunctionspace,
3
wedemonstratethatencoder-decoderapproacheswithoutgradientinformationcanalsobecompetitivewithotherapproaches,whichhasnotbeenshownbefore.
Furthermore,becausetrainingdataforeachtaskinmeta-learningisoftenlimited,uncertaintyestimationbecomescrucial.StochasticProcesses(sps)(e.g.GaussianProcesses(gps))canbeusedtomakepredictionswithuncertaintyestimation.Thus,learningtheseprocessescanbeseenasawaytoapproachmeta-learningwithuncer-taintyinmind.InChapter
4
,weproposeanewframeworktoconstructexpressiveneuralparameterisedspsbyparameterisingMarkovtransitionsinfunctionspace.
Unlikemeta-learningabove,whichdiscoverssharedknowledgefromrelatedtasks,symmetryservesasadirectformofpriororinductivebias,integratedintodeeplearningmodelswithouttheneedforpre-training.Symmetriesrefertotransformationsthatmaintaincertainpropertiesofanobjectofinterestunchanged.Theseincludetransformationssuchasimagetranslation,rotation,orpermutationofsetelements.Byincorporatingthesesymmetriesintodeeplearningmodels,ensuringthattheoutputsremainconsistent(thesameorundergothecorrespondingtransformation)despiteinputtransformations,themodelinherentlygeneralizestotransformedinputs.Consequently,deeplearningmodelsequippedwiththesesymmetriesnotonlybecomemoredata-efficientbutalsogeneralizebetter.AsimpleexampleofthisisConvolutinalNeuralNetworks(cnns),whichareinvarianttoinputtranslationsforclassificationtasks,andperformsignificantlybettercomparedtoplainfeed-forwardnetworks.Earlierresearchhasintroducedmanymethodstobuildconvolutional[
Cohenand
Welling,
2016,
2017,
Cohenetal.,
2019]andattentionblocks[Hutchinsonetal.,
2021,
Fuchsetal.,
2020
]thatareequivariantw.r.t.tovarioussymmetries.However,thepoolinglayersorsubsampling/upsamplinglayerscommonlyusedinvariousdeeplearningarchitecturesbreakthesesymmetries[
Zhang,
2019]
.InChapter
5,wepresent
groupequivariantsubsampling/upsamplinglayersthathaveexactequivariance.
1.2Thesisoutline
InChapter
2
,weprovideashortintroductiontometa-learning,neuralprocessesandsymmetriesindeeplearning,tosetthestageforlaterchapters.
InChapter
3
,weintroduceaniterativefunctionalencoder-decodermethodforsu-pervisedmeta-learning,whichisbasedonNeuralProcesses(nps)[
Garneloetal.,
4
2018a
,b]
.Onstandardfew-shotclassificationbenchmarkslikeminiImageNetandtieredImageNet,itisdemonstratedthatmeta-learningmethodsbasedontheneuralprocessfamilycanbecompetitiveorevenoutperformgradient-basedmethodssuchasMAML[
Finnetal.,
2017a
]andLEO[
Rusuetal.,
2019]
.
InChapter
4
,weintroduceMarkovNeuralProcesses(MNPs),anewclassofStochasticProcesses(SPs)whichareconstructedbystackingsequencesofneuralparameterisedMarkovtransitionoperatorsinfunctionspace.Therefore,theproposediterativeconstructionaddssubstantialflexibilityandexpressivitytotheoriginalframeworkofNeuralProcesses(NPs)withoutcompromisingconsistencyoraddingrestrictions.OurexperimentsdemonstrateclearadvantagesofMNPsoverbaselinemodelsonavarietyoftasks.It’snoteworthythatspmodelscanbeviewedthroughameta-learninglens.Sotheproposedmethodcanalsobeseenasameta-learningapproachwithprincipleduncertaintyestimation.
Chapter
5
,wefirstintroducetranslationequivariantsubsampling/upsamplinglayersthatcanbeusedtoconstructexacttranslationequivariantCNNs.Wethengeneralisetheselayersbeyondtranslationstogeneralgroups,thusproposinggroupequivariantsubsampling/upsampling.Weusetheselayerstoconstructgroupequivariantautoen-coders(GAEs)thatallowustolearnlow-dimensionalequivariantrepresentations.Weempiricallyverifyonimagesthattherepresentationsareindeedequivarianttoinputtranslationsandrotations,andthusgeneralisewelltounseenpositionsandorienta-tions.WefurtheruseGAEsinmodelsthatlearnobject-centricrepresentationsonmulti-objectdatasets,andshowimproveddataefficiencyanddecompositioncomparedtonon-equivariantbaselines.
InChapter
6
,wesummarizeourfindingsandexplorepotentialavenuesforfutureresearchtofurtheradvancethefield.
1.3Papers
Thisisanintegratedthesisandincludesthefollowingpublishedpapers:Chapter3contains:
Xu,J.,Ton,J.F.,Kim,H.,Kosiorek,A.,&Teh,Y.W.Metafun:Meta-
5
learningwithiterativefunctionalupdates.InternationalConferenceon
MachineLearning(ICML),2020[
Xuetal.,
2020]
Chapter4contains:
Xu,J.,Kim,H.,Rainforth,T.,&Teh,Y.(2021).Groupequivariantsub-sampling.AdvancesinNeuralInformationProcessingSystems(NeurIPS),2021[
Xuetal.,
2021]
Chapter5contains
Xu,J.,Dupont,E.,M?rtens,K.,Rainforth,T.,&Teh,Y.W.(2023).DeepStochasticProcessesviaFunctionalMarkovTransitionOperators.AdvancesinNeuralInformationProcessingSystems(NeurIPS),2023[
Xu
etal.
,
2023]
6
Chapter2
Background
2.1Meta-learning
2.1.1Conventionalsupervisedlearningandmeta-learning
Inconventionalsupervisedlearning,theobjectiveistolearnafunctionfthatmapsaninputfeaturevectorx∈Xtoanoutputlabely∈Y.Learningisbasedonexampleinput-outputpairsinatrainingsetDtrain={(xi,yi.Commontypesofsupervisedlearningtasksincluderegressionwhereoutputlabelsarereal-valued,andclassificationwheretheoutputlabelsrepresentdifferentclasses.Thefunctionf,oftenreferredto
asthepredictivemodel,isamemberofahypothesisclass,H:={f|f(x;?),?∈Rdφ}.
Foreachtask,thereisariskfunction?(y,f(x))whichmeasurespredictionerror.Asanexample,inthecontextofaregressiontask,?oftentakestheformofasquarederror,?(y,f(x))=(y?f(x))2.Thetrainingprocessofthemodelftranslatestosolvinganoptimizationproblemdefinedasfollows:
ItiscalledempiricalriskminimizationbecausethisobjectiveisanestimationofthepopulationriskE(xi,yi)~p(x,y)[?(yi,f(xi))]basedontheempiricaldistributionoftrainingdata.
7
Aftertraining,themodelshouldgeneralizeeffectivelywhenpresentedwithatestset,denotedasDtest={(xi,yim+1.Themodel’sperformancecanbeassessedusing
thetestrisk(f;Dtest)whichservesasanestimateoftheoverallpopulationrisk
usingunseendata.
Figure2.1:Dataforameta-classificationproblem.Boththemeta-trainingandmeta-testsetsconsistoftasks(redrectangles)andarepresumedtocomefromthesametaskdistributionp(T).Eachofthesetasksencompassesitsowntask-specifictrainingandtestsets,whicharecommonlyreferredtoasthecontext(yellowlabels)andthetarget(greylabels)respectively.
Inpractice,itiscommontohavescenarioswherelotsofsupervisedlearningtasksarerelatedtoeachother,yetthenumberofdatapointsforeachindividualtaskislimited.Meta-learningemergesasanewlearningparadigmtoaddresssuchchallenges.
Specifically,wehaveameta-trainingsetdefinedasMtrain={(Dt(a)in,Dt(s)t,?(j)
andameta-testsetgivenbyMtest={(Dt(a)in,Dt(s)t,?(j)M+1.Eachelementinthese
meta-datasetsisatupleconsistingofatrainingset(calledthecontext),atestset(calledthetarget)andariskfunction(typicallythesamewithinameta-dataset).This3-tuplecharacterizesataskTj(seeFigure
2.1
illustration).Insupervisedlearning,weusetrainingdatatotrainapredictivemodel,hopingitcangeneralizeacrosstheentiredatadistribution.Inmeta-learning,theassumptionisthatthereisacommontaskdistribution,denotedasp(T),fromwhichboththemeta-trainingsetandthemeta-testsetaredrawn.Meta-learningalgorithmsaimtousemeta-trainingdatatodiscoverlearningalgorithmsthatcangeneralizeacrosstheentiretaskdistribution.
Morespecifically,alearningalgorithmforasupervisedlearningtasktakesinatraining
8
setDtrain,ariskfunction?andoutputsapredictivemodel,writtenas:
=ΦA(chǔ)LGO(Dtrain,?).(2.2)
Since?isusuallyfixed,wewillomitthedependencyonitinsubsequentdiscussions.Foraparticulartask,thelearningalgorithmΦA(chǔ)LGOcanbeevaluatedbythetestriskofthelearnedpredictivemodel,denotedas:
(;Dtest).(2.3)
Meta-learningfindsalearningalgorithmbasedontasksfromthemeta-trainingsetMtrain,sothatthislearningalgorithmcanbemoreefficientlyappliedtonewtasks,andgeneralizesacrossthetaskdistributionp(T).Themeta-learningalgorithmcanberepresentedas:
ΦA(chǔ)LGO=MetaAlgo(Mtrain).(2.4)
Toevaluatethemeta-learningalgorithm,wecancompute:
Whileitresemblesthetestlossinsupervisedlearning,theaggregatedtestriskforataskreplacesthetraditionalriskfunctionforadatapoint.
Itisworthnotingthatwhilewefocusonsupervisedlearningtaskshere,meta-learningcanbeextendedtounsupervisedlearning[
EdwardsandStorkey,
2016,
Reedetal.,
2018
,
Hsuetal.,
2018]orreinforcementlearning[
Wangetal.,
2016,
Finnetal.,
2017a
,b]
.
2.1.2Differentviewsofmeta-learning
Bi-leveloptimizationviewLetusassumeboththepredictivemodelfandthelearningalgorithmΦA(chǔ)LGOcanbeparameterised,andtheparametersaredenotedas?andθaccordingly.Thatistosay,thelearningalgorithmcanbewrittenas:
?=ΦA(chǔ)LGO(Dtrain;θ).(2.6)
9
Meta-learningcanbeformulatedasthefollowingbi-leveloptimizationproblem:
wheretask-specificparameter?jdependsonθthroughtheinner-loopoptimization:
?j(θ)=ΦA(chǔ)LGO(Dt(a)in;θ)(2.8)
Manymeta-learningalgorithmsaredevelopedbasedonthisbi-leveloptimizationview,suchas
Finnetal.
[2017a],
Nicholetal.
[2018],
RaviandLarochelle
[2016]
.
HierarchicalmodelviewFromaprobabilisticperspective,thegenerativeprocessforeachtaskTjcanbeexpressedas:
θ~p(θ),?j~p(?j|θ),yi(j)~p(yi(j)|xi(j)?j,θ)(2.9)
BoththetrainingsetDt(a)inandthetestsetDt(s)tfollowthesamedistribution(as
illustratedinFigure
2.2
).Thiscanbeseenasaprobabilistichierarchicalmodelwhereθindicatesthehigh-levelglobalparametersforalltasksand?jdenotesthelow-levellocalparametersforeachtask.Inthiscontext,meta-learningisaboutinferringθfromlotsoftasksinthemeta-trainingset,thatisp(θ|Mtrain).Learning,ontheother
hand,infers?jgiventhetrainingsetDt(a)infortaskTj,thatisp(?j|θ,Dt(a)in).
(j)i
j=1,...
Figure2.2:Meta-learningashierarchicalmodels(AremakeofFigure1in
Gordon
etal.
[2018])
.Task-specificparameter?jdependsontheglobalparameterθ.Datapointsinboththecontextandthetargethavethesamegenerativeprocess,whichdependonbothθand?j.
Notethatp(?j|θ)canbeseenasapriorfortaskTjconditionedonθ.Therefore,meta-learningcanbeseenaslearninganempiricalpriorfromthemeta-trainingset.
Finnetal.
[2018],
Requeimaetal.
[2019]adoptsthisview
.
10
Model-basedviewAlearningalgorithmf=ΦA(chǔ)LGO(Dtrain)canbeseenasafunctionthattakesintheentiretrainingsetandoutputsapredictivemodel.ThemodelisthenusedtomakepredictionsontestdatainDtest.Thelearningandpredictionprocessescanthusbeconceptualizedassequence-to-sequencemappings.Forthesakeofbrevity,let’suseaconcisenotationfordatasequences,suchasx1:n={x1,x2,...,xn}.ForaspecifictaskTj,makingpredictionsfortestsetdatapointsbasedonthosefromthetrainingsetcanbedescribedasthefollowinginferencetask
p(ym+1:n|xm+1:n,x1:m,y1:m).(2.10)
Fromthisperspective,meta-learningisaboutcreatingthisconditionalmodel.Meta-learningonlydiffersfromconventionalsupervisedlearninginthatboththeinp
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)?;@球室管理制度
- 學(xué)校運動會管理制度
- 學(xué)生吹風(fēng)筒管理制度
- 孩子上學(xué)房管理制度
- 安全雙體系管理制度
- 安全防觸電管理制度
- 完善填埋場管理制度
- 實名制監(jiān)督管理制度
- 實驗室參觀管理制度
- 客戶集中度管理制度
- 新塘2標(biāo)(南交通核)FAS、BAS施工方案
- 廣東省珠海市香洲區(qū)2023-2024學(xué)年七年級下學(xué)期期末歷史試題(原卷版)
- (高清版)AQ 2061-2018 金屬非金屬地下礦山防治水安全技術(shù)規(guī)范
- 12S108-2 真空破壞器選用與安裝
- 2024年武漢市中考數(shù)學(xué)真題試卷及答案解析
- 氣象信息服務(wù)行業(yè)市場突圍建議及需求分析報告
- TDT 1083-2023 國土調(diào)查數(shù)據(jù)庫更新數(shù)據(jù)規(guī)范
- 2024年天翼云從業(yè)者認(rèn)證考試題庫(判斷題)
- QBT 2198-1996手電筒行業(yè)標(biāo)準(zhǔn)
- SYT 0452-2021 石油天然氣金屬管道焊接工藝評定-PDF解密
- 食品營養(yǎng)學(xué)(暨南大學(xué))智慧樹知到期末考試答案2024年
評論
0/150
提交評論