2023-2024學(xué)年上海市青浦區(qū)高三下學(xué)期期末數(shù)學(xué)試題試卷_第1頁
2023-2024學(xué)年上海市青浦區(qū)高三下學(xué)期期末數(shù)學(xué)試題試卷_第2頁
2023-2024學(xué)年上海市青浦區(qū)高三下學(xué)期期末數(shù)學(xué)試題試卷_第3頁
2023-2024學(xué)年上海市青浦區(qū)高三下學(xué)期期末數(shù)學(xué)試題試卷_第4頁
2023-2024學(xué)年上海市青浦區(qū)高三下學(xué)期期末數(shù)學(xué)試題試卷_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年上海市青浦區(qū)高三下學(xué)期期末數(shù)學(xué)試題試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中的常數(shù)項為()A.-60 B.240 C.-80 D.1802.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增 B.函數(shù)在上單調(diào)遞減C.函數(shù)圖像關(guān)于對稱 D.函數(shù)圖像關(guān)于對稱3.設(shè)分別為雙曲線的左、右焦點,過點作圓的切線,與雙曲線的左、右兩支分別交于點,若,則雙曲線漸近線的斜率為()A. B. C. D.4.已知銳角滿足則()A. B. C. D.5.如圖所示,在平面直角坐標系中,是橢圓的右焦點,直線與橢圓交于,兩點,且,則該橢圓的離心率是()A. B. C. D.6.造紙術(shù)、印刷術(shù)、指南針、火藥被稱為中國古代四大發(fā)明,此說法最早由英國漢學(xué)家艾約瑟提出并為后來許多中國的歷史學(xué)家所繼承,普遍認為這四種發(fā)明對中國古代的政治,經(jīng)濟,文化的發(fā)展產(chǎn)生了巨大的推動作用.某小學(xué)三年級共有學(xué)生500名,隨機抽查100名學(xué)生并提問中國古代四大發(fā)明,能說出兩種發(fā)明的有45人,能說出3種及其以上發(fā)明的有32人,據(jù)此估計該校三級的500名學(xué)生中,對四大發(fā)明只能說出一種或一種也說不出的有()A.69人 B.84人 C.108人 D.115人7.若的展開式中含有常數(shù)項,且的最小值為,則()A. B. C. D.8.已知拋物線C:,過焦點F的直線l與拋物線C交于A,B兩點(A在x軸上方),且滿足,則直線l的斜率為()A.1 B.C.2 D.39.點在曲線上,過作軸垂線,設(shè)與曲線交于點,,且點的縱坐標始終為0,則稱點為曲線上的“水平黃金點”,則曲線上的“水平黃金點”的個數(shù)為()A.0 B.1 C.2 D.310.若復(fù)數(shù)(是虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.在三棱錐中,,,,,點到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.12.過拋物線C:y2=4x的焦點F,且斜率為的直線交C于點M(M在x軸的上方),l為C的準線,點N在l上且MN⊥l,則M到直線NF的距離為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),滿足約束條件,若的最大值是10,則________.14.在疫情防控過程中,某醫(yī)院一次性收治患者127人.在醫(yī)護人員的精心治療下,第15天開始有患者治愈出院,并且恰有其中的1名患者治愈出院.如果從第16天開始,每天出院的人數(shù)是前一天出院人數(shù)的2倍,那么第19天治愈出院患者的人數(shù)為_______________,第_______________天該醫(yī)院本次收治的所有患者能全部治愈出院.15.設(shè)P為有公共焦點的橢圓與雙曲線的一個交點,且,橢圓的離心率為,雙曲線的離心率為,若,則______________.16.若函數(shù),則的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若,證明:當時,;(2)若在只有一個零點,求的值.18.(12分)已知,函數(shù).(1)若,求的單調(diào)遞增區(qū)間;(2)若,求的值.19.(12分)在如圖所示的幾何體中,面CDEF為正方形,平面ABCD為等腰梯形,AB//CD,AB=2BC,點Q為AE的中點.(1)求證:AC//平面DQF;(2)若∠ABC=60°,AC⊥FB,求BC與平面DQF所成角的正弦值.20.(12分)已知等差數(shù)列的公差,且,,成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.21.(12分)某超市在節(jié)日期間進行有獎促銷,規(guī)定凡在該超市購物滿400元的顧客,均可獲得一次摸獎機會.摸獎規(guī)則如下:獎盒中放有除顏色不同外其余完全相同的4個球(紅、黃、黑、白).顧客不放回的每次摸出1個球,若摸到黑球則摸獎停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.(1)求1名顧客摸球2次摸獎停止的概率;(2)記X為1名顧客摸獎獲得的獎金數(shù)額,求隨機變量X的分布列和數(shù)學(xué)期望.22.(10分)在平面直角坐標系中,已知橢圓:()的左、右焦點分別為、,且點、與橢圓的上頂點構(gòu)成邊長為2的等邊三角形.(1)求橢圓的方程;(2)已知直線與橢圓相切于點,且分別與直線和直線相交于點、.試判斷是否為定值,并說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

求的展開式中的常數(shù)項,可轉(zhuǎn)化為求展開式中的常數(shù)項和項,再求和即可得出答案.【詳解】由題意,中常數(shù)項為,中項為,所以的展開式中的常數(shù)項為:.故選:D【點睛】本題主要考查二項式定理的應(yīng)用和二項式展開式的通項公式,考查學(xué)生計算能力,屬于基礎(chǔ)題.2.C【解析】

依題意可得,即函數(shù)圖像關(guān)于對稱,再求出函數(shù)的導(dǎo)函數(shù),即可判斷函數(shù)的單調(diào)性;【詳解】解:由,,所以函數(shù)圖像關(guān)于對稱,又,在上不單調(diào).故正確的只有C,故選:C【點睛】本題考查函數(shù)的對稱性的判定,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,屬于基礎(chǔ)題.3.C【解析】

如圖所示:切點為,連接,作軸于,計算,,,,根據(jù)勾股定理計算得到答案.【詳解】如圖所示:切點為,連接,作軸于,,故,在中,,故,故,,根據(jù)勾股定理:,解得.故選:.【點睛】本題考查了雙曲線的漸近線斜率,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.4.C【解析】

利用代入計算即可.【詳解】由已知,,因為銳角,所以,,即.故選:C.【點睛】本題考查二倍角的正弦、余弦公式的應(yīng)用,考查學(xué)生的運算能力,是一道基礎(chǔ)題.5.A【解析】

聯(lián)立直線方程與橢圓方程,解得和的坐標,然后利用向量垂直的坐標表示可得,由離心率定義可得結(jié)果.【詳解】由,得,所以,.由題意知,所以,.因為,所以,所以.所以,所以,故選:A.【點睛】本題考查了直線與橢圓的交點,考查了向量垂直的坐標表示,考查了橢圓的離心率公式,屬于基礎(chǔ)題.6.D【解析】

先求得名學(xué)生中,只能說出一種或一種也說不出的人數(shù),由此利用比例,求得名學(xué)生中對四大發(fā)明只能說出一種或一種也說不出的人數(shù).【詳解】在這100名學(xué)生中,只能說出一種或一種也說不出的有人,設(shè)對四大發(fā)明只能說出一種或一種也說不出的有人,則,解得人.故選:D【點睛】本小題主要考查利用樣本估計總體,屬于基礎(chǔ)題.7.C【解析】展開式的通項為,因為展開式中含有常數(shù)項,所以,即為整數(shù),故n的最小值為1.所以.故選C點睛:求二項展開式有關(guān)問題的常見類型及解題策略(1)求展開式中的特定項.可依據(jù)條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第項,由特定項得出值,最后求出其參數(shù).8.B【解析】

設(shè)直線的方程為代入拋物線方程,利用韋達定理可得,,由可知所以可得代入化簡求得參數(shù),即可求得結(jié)果.【詳解】設(shè),(,).易知直線l的斜率存在且不為0,設(shè)為,則直線l的方程為.與拋物線方程聯(lián)立得,所以,.因為,所以,得,所以,即,,所以.故選:B.【點睛】本題考查直線與拋物線的位置關(guān)系,考查韋達定理及向量的坐標之間的關(guān)系,考查計算能力,屬于中檔題.9.C【解析】

設(shè),則,則,即可得,設(shè),利用導(dǎo)函數(shù)判斷的零點的個數(shù),即為所求.【詳解】設(shè),則,所以,依題意可得,設(shè),則,當時,,則單調(diào)遞減;當時,,則單調(diào)遞增,所以,且,有兩個不同的解,所以曲線上的“水平黃金點”的個數(shù)為2.故選:C【點睛】本題考查利用導(dǎo)函數(shù)處理零點問題,考查向量的坐標運算,考查零點存在性定理的應(yīng)用.10.A【解析】

將整理成的形式,得到復(fù)數(shù)所對應(yīng)的的點,從而可選出所在象限.【詳解】解:,所以所對應(yīng)的點為在第一象限.故選:A.【點睛】本題考查了復(fù)數(shù)的乘法運算,考查了復(fù)數(shù)對應(yīng)的坐標.易錯點是誤把當成進行計算.11.C【解析】

首先根據(jù)垂直關(guān)系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個表達式,在中,可以計算出的一個表達式,根據(jù)長度關(guān)系可構(gòu)造等式求得半徑,進而求出球的表面積.【詳解】取中點,由,可知:,為三棱錐外接球球心,過作平面,交平面于,連接交于,連接,,,,,,為的中點由球的性質(zhì)可知:平面,,且.設(shè),,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.【點睛】本題考查三棱錐外接球的表面積的求解問題,求解幾何體外接球相關(guān)問題的關(guān)鍵是能夠利用球的性質(zhì)確定外接球球心的位置.12.C【解析】

聯(lián)立方程解得M(3,),根據(jù)MN⊥l得|MN|=|MF|=4,得到△MNF是邊長為4的等邊三角形,計算距離得到答案.【詳解】依題意得F(1,0),則直線FM的方程是y=(x-1).由得x=或x=3.由M在x軸的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4又∠NMF等于直線FM的傾斜角,即∠NMF=60°,因此△MNF是邊長為4的等邊三角形點M到直線NF的距離為故選:C.【點睛】本題考查了直線和拋物線的位置關(guān)系,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合即可容易求得結(jié)果.【詳解】畫出不等式組表示的平面區(qū)域如下所示:目標函數(shù)可轉(zhuǎn)化為與直線平行,數(shù)形結(jié)合可知當且僅當目標函數(shù)過點,取得最大值,故可得,解得.故答案為:.【點睛】本題考查由目標函數(shù)的最值求參數(shù)值,屬基礎(chǔ)題.14.161【解析】

由題意可知出院人數(shù)構(gòu)成一個首項為1,公比為2的等比數(shù)列,由此可求結(jié)果.【詳解】某醫(yī)院一次性收治患者127人.第15天開始有患者治愈出院,并且恰有其中的1名患者治愈出院.且從第16天開始,每天出院的人數(shù)是前一天出院人數(shù)的2倍,從第15天開始,每天出院人數(shù)構(gòu)成以1為首項,2為公比的等比數(shù)列,則第19天治愈出院患者的人數(shù)為,,解得,第天該醫(yī)院本次收治的所有患者能全部治愈出院.故答案為:16,1.【點睛】本題主要考查了等比數(shù)列在實際問題中的應(yīng)用,考查等比數(shù)列的性質(zhì)等基礎(chǔ)知識,考查推理能力與計算能力,屬于中檔題.15.【解析】設(shè)根據(jù)橢圓的幾何性質(zhì)可得,根據(jù)雙曲線的幾何性質(zhì)可得,,即故答案為16.【解析】

根據(jù)題意,由函數(shù)的解析式求出的值,進而計算可得答案.【詳解】根據(jù)題意,函數(shù),則,則;故答案為:.【點睛】本題考查分段函數(shù)的性質(zhì)、對數(shù)運算法則的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)【解析】

分析:(1)先構(gòu)造函數(shù),再求導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)不大于零得函數(shù)單調(diào)遞減,最后根據(jù)單調(diào)性證得不等式;(2)研究零點,等價研究的零點,先求導(dǎo)數(shù):,這里產(chǎn)生兩個討論點,一個是a與零,一個是x與2,當時,,沒有零點;當時,先減后增,從而確定只有一個零點的必要條件,再利用零點存在定理確定條件的充分性,即得a的值.詳解:(1)當時,等價于.設(shè)函數(shù),則.當時,,所以在單調(diào)遞減.而,故當時,,即.(2)設(shè)函數(shù).在只有一個零點當且僅當在只有一個零點.(i)當時,,沒有零點;(ii)當時,.當時,;當時,.所以在單調(diào)遞減,在單調(diào)遞增.故是在的最小值.①若,即,在沒有零點;②若,即,在只有一個零點;③若,即,由于,所以在有一個零點,由(1)知,當時,,所以.故在有一個零點,因此在有兩個零點.綜上,在只有一個零點時,.點睛:利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)利用零點存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解.(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問題,從而構(gòu)建不等式求解.18.(1);(2).【解析】

(1)利用三角恒等變換思想化簡函數(shù)的解析式為,然后解不等式,可得出函數(shù)的單調(diào)遞增區(qū)間;(2)由得出,并求出的值,利用兩角差的正弦公式可求出的值.【詳解】(1)當時,,由,得,因此,函數(shù)的單調(diào)遞增區(qū)間為;(2),,,,,,.【點睛】本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關(guān)鍵,屬中等題.19.(1)見解析(2)【解析】

(1)連接交于點,連接,通過證明,證得平面.(2)建立空間直角坐標系,利用直線的方向向量和平面的法向量,計算出線面角的正弦值.【詳解】(1)證明:連接交于點,連接,因為四邊形為正方形,所以點為的中點,又因為為的中點,所以;平面平面,平面.(2)解:,設(shè),則,在中,,由余弦定理得:,.又,平面..平面.如圖建立的空間直角坐標系.在等腰梯形中,可得.則.那么設(shè)平面的法向量為,則有,即,取,得.設(shè)與平面所成的角為,則.所以與平面所成角的正弦值為.【點睛】本小題主要考查線面平行的證明,考查線面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.20.(1);(2).【解析】

(1)根據(jù)等比中項性質(zhì)可構(gòu)造方程求得,由等差數(shù)列通項公式可求得結(jié)果;(2)由(1)可得,可知為等比數(shù)列,利用分組求和法,結(jié)合等差和等比數(shù)列求和公式可求得結(jié)果.【詳解】(1)成等比數(shù)列,,即,,解得:,.(2)由(1)得:,,,數(shù)列是首項為,公比為的等比數(shù)列,.【點睛】本題考查等差數(shù)列通項公式的求解、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論