版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
答案第=page11頁,共=sectionpages22頁專題01集合【練基礎(chǔ)】單選題1.(2023·浙江溫州·模擬預(yù)測)已知全集SKIPIF1<0,集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】先求出集合SKIPIF1<0的補(bǔ)集,再求出SKIPIF1<0即可.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,故選:B2.(2022·湖南·安仁縣第一中學(xué)模擬預(yù)測)若集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由分式不等式的解法與交集的概念求解【詳解】由SKIPIF1<0得SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0故選:B3.(2022·貴州貴陽·模擬預(yù)測(理))已知集合SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用對數(shù)函數(shù)的定義域化簡集合SKIPIF1<0,再根據(jù)集合交集的定義求解即可.【詳解】由對數(shù)函數(shù)的定義域可得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0,故選:C.4.(2022·吉林·長春吉大附中實(shí)驗學(xué)校模擬預(yù)測)某單位周一?周二?周三開車上班的職工人數(shù)分別是15,12,9.若這三天中只有一天開車上班的職工人數(shù)是20,則這三天都開車上班的職工人數(shù)的最大值是(
)A.3 B.4 C.5 D.6【答案】B【分析】將問題轉(zhuǎn)化為韋恩圖,結(jié)合題意設(shè)出未知量,列出方程,求出答案.【詳解】作出韋恩圖,如圖,由題意得SKIPIF1<0,則有SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,因此要讓SKIPIF1<0最大,則SKIPIF1<0需要最小,若SKIPIF1<0則SKIPIF1<0不滿足題意,若SKIPIF1<0則SKIPIF1<0不滿足題意,若SKIPIF1<0則SKIPIF1<0滿足題意,所以這三天都開車上班的職工人數(shù)的最大值是4,故選:B.5.(2022·浙江寧波·一模)已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】先求對數(shù)函數(shù)的定義域化簡集合SKIPIF1<0,再解二次不等式化簡集合SKIPIF1<0,從而利用集合的交集運(yùn)算求得結(jié)果.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,所以利用數(shù)軸法易得SKIPIF1<0.故選:B.6.(2022·廣東·肇慶市外國語學(xué)校模擬預(yù)測)SKIPIF1<0,則陰影部分表示的集合為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由Venn圖表示的集合求解.【詳解】SKIPIF1<0,圖中陰影部分表示SKIPIF1<0,故選:C.7.(2022·湖北·丹江口市第一中學(xué)模擬預(yù)測)已知集合SKIPIF1<0SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)a的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】C【分析】根據(jù)一元二次不等式的求解分別可集合SKIPIF1<0,進(jìn)而根據(jù)交運(yùn)算的結(jié)果即可得不等關(guān)系,進(jìn)行求解.【詳解】由SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,因此SKIPIF1<0,由SKIPIF1<0知SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0.故選:C8.(2022·貴州·黔西南州金成實(shí)驗學(xué)校高三階段練習(xí))設(shè)集合SKIPIF1<0,集合SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】求解絕對值不等式和函數(shù)定義域解得集合SKIPIF1<0,再求交集即可.【詳解】根據(jù)題意,可得SKIPIF1<0,故SKIPIF1<0.故選:B.多選題9.(2022·廣東·廣州市番禺區(qū)象賢中學(xué)高三階段練習(xí))已知集合SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的取值可以是(
)A.2 B.3 C.4 D.5【答案】AB【分析】根據(jù)并集的結(jié)果可得SKIPIF1<0SKIPIF1<0,即可得到SKIPIF1<0的取值;【詳解】解:因為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0;故選:AB10.(2023·全國·高三專題練習(xí))已知SKIPIF1<0?SKIPIF1<0均為實(shí)數(shù)集SKIPIF1<0的子集,且SKIPIF1<0,則下列結(jié)論中正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BD【分析】由題可知SKIPIF1<0,利用包含關(guān)系即可判斷.【詳解】∵SKIPIF1<0∴SKIPIF1<0,若SKIPIF1<0是SKIPIF1<0的真子集,則SKIPIF1<0,故A錯誤;由SKIPIF1<0可得SKIPIF1<0,故B正確;由SKIPIF1<0可得SKIPIF1<0,故C錯誤,D正確.故選:BD.11.(2023·全國·高三專題練習(xí))已知全集U的兩個非空真子集A,B滿足SKIPIF1<0,則下列關(guān)系一定正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】CD【分析】采用特值法,可設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根據(jù)集合之間的基本關(guān)系,對選項SKIPIF1<0逐項進(jìn)行檢驗,即可得到結(jié)果.【詳解】令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,滿足SKIPIF1<0,但SKIPIF1<0,SKIPIF1<0,故A,B均不正確;由SKIPIF1<0,知SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,由SKIPIF1<0,知SKIPIF1<0,∴SKIPIF1<0,故C,D均正確.故選:CD.12.(2022·全國·高三專題練習(xí))圖中陰影部分用集合符號可以表示為(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】AD【分析】由圖可知,陰影部分是集合B與集合C的并集,再由集合A求交集,或是集A與B的交集并上集合A與C的交集,從而可得答案【詳解】解:由圖可知,陰影部分是集合B與集合C的并集,再由集合A求交集,或是集A與B的交集并上集合A與C的交集,所以陰影部分用集合符號可以表示為SKIPIF1<0或SKIPIF1<0,故選:AD填空題13.(2022·全國·高三專題練習(xí))集合SKIPIF1<0,則SKIPIF1<0_________.【答案】SKIPIF1<0【分析】先求出集合A,B,進(jìn)而根據(jù)集合的交集和補(bǔ)集運(yùn)算即可求得答案.【詳解】由題意,SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<0.14.(2022·河南·模擬預(yù)測(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0的值域分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0【分析】根據(jù)指數(shù)函數(shù)、二次函數(shù)的性質(zhì)求出集合SKIPIF1<0,SKIPIF1<0,再根據(jù)交集的結(jié)果得到參數(shù)的取值范圍.【詳解】解:因為SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<015.(2023·上?!じ呷龑n}練習(xí))設(shè)全集SKIPIF1<0,集合SKIPIF1<0,則SKIPIF1<0_____.【答案】SKIPIF1<0【分析】根據(jù)題意注意到集合元素可得SKIPIF1<0,再結(jié)合補(bǔ)集運(yùn)算求解.【詳解】∵SKIPIF1<0,則SKIPIF1<0故答案為:SKIPIF1<0.16.(2022·全國·高三專題練習(xí))建黨百年之際,影片《SKIPIF1<0》《長津湖》《革命者》都已陸續(xù)上映,截止SKIPIF1<0年SKIPIF1<0月底,《長津湖》票房收入已超SKIPIF1<0億元,某市文化調(diào)查機(jī)構(gòu),在至少觀看了這三部影片中的其中一部影片的市民中隨機(jī)抽取了SKIPIF1<0人進(jìn)行調(diào)查,得知其中觀看了《SKIPIF1<0》的有SKIPIF1<0人,觀看了《長津湖》的有SKIPIF1<0人,觀看了《革命者》的有SKIPIF1<0人,數(shù)據(jù)如圖,則圖中SKIPIF1<0___________;SKIPIF1<0___________;SKIPIF1<0___________.【答案】
SKIPIF1<0
SKIPIF1<0
SKIPIF1<0【分析】根據(jù)韋恩圖,結(jié)合看每部電影的人數(shù)可構(gòu)造方程組求得結(jié)果.【詳解】由題意得:SKIPIF1<0,解得:SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0;SKIPIF1<0.四、解答題17.(2022·陜西·大荔縣教學(xué)研究室一模)已知集合SKIPIF1<0,SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求SKIPIF1<0;(2)當(dāng)SKIPIF1<0時,若“SKIPIF1<0”是“SKIPIF1<0”的充分條件,求實(shí)數(shù)a的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)將SKIPIF1<0代入得SKIPIF1<0,求出SKIPIF1<0即可.(2)化簡SKIPIF1<0,將已知條件轉(zhuǎn)化為SKIPIF1<0,列出不等式求解,寫出范圍.(1)當(dāng)SKIPIF1<0時,由不等式SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0所以SKIPIF1<0.(2)若“SKIPIF1<0”是“SKIPIF1<0”的充分條件,等價于SKIPIF1<0,因為SKIPIF1<0,由不等式SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0要使SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,又因為SKIPIF1<0綜上可得實(shí)數(shù)a的取值范圍為SKIPIF1<0.18.(2022·全國·高三專題練習(xí))已知集合SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,求實(shí)數(shù)m的取值范圍;(2)若SKIPIF1<0且SKIPIF1<0,求實(shí)數(shù)m的值.【答案】(1)SKIPIF1<0.(2)m=SKIPIF1<0或1.【分析】(1)利用集合間的包含關(guān)系建立不等式組,分類討論進(jìn)行求解.(2)根據(jù)已知,利用集合的交集運(yùn)算,分類討論進(jìn)行求解.【詳解】(1)由SKIPIF1<0,知SKIPIF1<0.①當(dāng)SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0;②當(dāng)SKIPIF1<0時,有SKIPIF1<0,解得SKIPIF1<0.所以實(shí)數(shù)m的取值范圍為SKIPIF1<0.(2)因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則①當(dāng)SKIPIF1<0時,有SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,此時SKIPIF1<0,滿足題意;②當(dāng)SKIPIF1<0時,有SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,此時SKIPIF1<0,不滿足題意,舍去;③當(dāng)SKIPIF1<0時,有SKIPIF1<0,解得SKIPIF1<0,此時SKIPIF1<0,SKIPIF1<0,滿足題意.綜上,實(shí)數(shù)m的值為SKIPIF1<0或1.【提能力】一、單選題19.(2022·全國·高三專題練習(xí)(文))已知集合SKIPIF1<0,集合SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】令SKIPIF1<0,由SKIPIF1<0單調(diào)性和SKIPIF1<0可求得集合SKIPIF1<0,將問題轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0上恒成立,化簡不等式得SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,由導(dǎo)數(shù)可確定其單調(diào)性;分別在SKIPIF1<0、SKIPIF1<0和SKIPIF1<0三種情況下,根據(jù)不等式恒成立求得取值范圍.【詳解】令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0的解集為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的解集的子集,即當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立;由SKIPIF1<0得:SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增;①當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上恒成立,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,SKIPIF1<0;綜上所述:SKIPIF1<0;②當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足題意;③當(dāng)SKIPIF1<0時,若SKIPIF1<0恒成立,則SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上不恒成立,SKIPIF1<0不合題意;綜上所述:實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選:B.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題以集合為載體,考查了利用導(dǎo)數(shù)求解不等式恒成立問題,解題關(guān)鍵是能夠根據(jù)集合的包含關(guān)系將問題轉(zhuǎn)化為不等式恒成立,通過同構(gòu)的思想將問題進(jìn)一步轉(zhuǎn)化為函數(shù)的函數(shù)值之間的比較問題,通過構(gòu)造函數(shù),結(jié)合函數(shù)的單調(diào)性來進(jìn)行求解.20.(2022·全國·高三專題練習(xí))設(shè)集合SKIPIF1<0中至少兩個元素,且SKIPIF1<0滿足:①對任意SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,②對任意SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,下列說法正確的是(
)A.若SKIPIF1<0有2個元素,則SKIPIF1<0有3個元素B.若SKIPIF1<0有2個元素,則SKIPIF1<0有4個元素C.存在3個元素的集合SKIPIF1<0,滿足SKIPIF1<0有5個元素D.存在3個元素的集合SKIPIF1<0,滿足SKIPIF1<0有4個元素【答案】A【解析】不妨設(shè)SKIPIF1<0,由②知集合SKIPIF1<0中的兩個元素必為相反數(shù),設(shè)SKIPIF1<0,由①得SKIPIF1<0,由于集合SKIPIF1<0中至少兩個元素,得到至少還有另外一個元素SKIPIF1<0,分集合SKIPIF1<0有SKIPIF1<0個元素和多于SKIPIF1<0個元素分類討論,即可求解.【詳解】若SKIPIF1<0有2個元素,不妨設(shè)SKIPIF1<0,以為SKIPIF1<0中至少有兩個元素,不妨設(shè)SKIPIF1<0,由②知SKIPIF1<0,因此集合SKIPIF1<0中的兩個元素必為相反數(shù),故可設(shè)SKIPIF1<0,由①得SKIPIF1<0,由于集合SKIPIF1<0中至少兩個元素,故至少還有另外一個元素SKIPIF1<0,當(dāng)集合SKIPIF1<0有SKIPIF1<0個元素時,由②得:SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0.當(dāng)集合SKIPIF1<0有多于SKIPIF1<0個元素時,不妨設(shè)SKIPIF1<0,其中SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,但此時SKIPIF1<0,即集合SKIPIF1<0中至少有SKIPIF1<0這三個元素,若SKIPIF1<0,則集合SKIPIF1<0中至少有SKIPIF1<0這三個元素,這都與集合SKIPIF1<0中只有2個運(yùn)算矛盾,綜上,SKIPIF1<0,故A正確;當(dāng)集合SKIPIF1<0有SKIPIF1<0個元素,不妨設(shè)SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,集合SKIPIF1<0中至少兩個不同正數(shù),兩個不同負(fù)數(shù),即集合SKIPIF1<0中至少SKIPIF1<0個元素,與SKIPIF1<0矛盾,排除C,D.故選:A.【點(diǎn)睛】解題技巧:解決以集合為背景的新定義問題要抓住兩點(diǎn):1、緊扣新定義,首先分析新定義的特點(diǎn),把心定義所敘述的問題的本質(zhì)弄清楚,應(yīng)用到具體的解題過程中;2、用好集合的性質(zhì),解題時要善于從試題中發(fā)現(xiàn)可以使用的集合的性質(zhì)的一些因素.21.(2020·全國·高三專題練習(xí)(理))定義:SKIPIF1<0表示SKIPIF1<0的解集中整數(shù)解的個數(shù).若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】SKIPIF1<0可轉(zhuǎn)化為滿足SKIPIF1<0的整數(shù)解SKIPIF1<0的個數(shù),畫圖排除SKIPIF1<0,SKIPIF1<0的情況,SKIPIF1<0時,只需滿足SKIPIF1<0,解得答案.【詳解】根據(jù)題意,SKIPIF1<0可轉(zhuǎn)化為滿足SKIPIF1<0的整數(shù)解SKIPIF1<0的個數(shù).當(dāng)SKIPIF1<0時,數(shù)形結(jié)合可得SKIPIF1<0的解集中整數(shù)解的個數(shù)有無數(shù)個;當(dāng)SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,在SKIPIF1<0內(nèi)有3個整數(shù)解,即SKIPIF1<0,所以SKIPIF1<0不符合題意;當(dāng)SKIPIF1<0時,作出函數(shù)SKIPIF1<0和SKIPIF1<0的大致圖象,如圖所示:若SKIPIF1<0,即SKIPIF1<0的整數(shù)解只有一個,只需滿足SKIPIF1<0即SKIPIF1<0解得SKIPIF1<0,所以當(dāng)SKIPIF1<0時,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0,故選:B.【點(diǎn)睛】本題考查新定義、函數(shù)與方程的綜合應(yīng)用,意在考查學(xué)生的分類討論能力,畫出圖像是解題的關(guān)鍵.22.(2022·全國·高三專題練習(xí))設(shè)集合SKIPIF1<0是集合SKIPIF1<0的子集,對于SKIPIF1<0,定義SKIPIF1<0,給出下列三個結(jié)論:①存在SKIPIF1<0的兩個不同子集SKIPIF1<0,使得任意SKIPIF1<0都滿足SKIPIF1<0且SKIPIF1<0;②任取SKIPIF1<0的兩個不同子集SKIPIF1<0,對任意SKIPIF1<0都有SKIPIF1<0SKIPIF1<0SKIPIF1<0;③任取SKIPIF1<0的兩個不同子集SKIPIF1<0,對任意SKIPIF1<0都有SKIPIF1<0SKIPIF1<0SKIPIF1<0;其中,所有正確結(jié)論的序號是(
)A.①② B.②③ C.①③ D.①②③【答案】A【分析】根據(jù)題目中給的新定義,對于SKIPIF1<0或SKIPIF1<0,可逐一對命題進(jìn)行判斷,舉實(shí)例例證明存在性命題是真命題,舉反例可證明全稱命題是假命題.【詳解】∵對于SKIPIF1<0,定義SKIPIF1<0,∴對于①,例如集合SKIPIF1<0是正奇數(shù)集合,SKIPIF1<0是正偶數(shù)集合,SKIPIF1<0,SKIPIF1<0,故①正確;對于②,若SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0,或SKIPIF1<0且SKIPIF1<0,或SKIPIF1<0且SKIPIF1<0;SKIPIF1<0;若SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0;SKIPIF1<0;∴任取SKIPIF1<0的兩個不同子集SKIPIF1<0,對任意SKIPIF1<0都有SKIPIF1<0;正確,故②正確;對于③,例如:SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0;SKIPIF1<0;故③錯誤;∴所有正確結(jié)論的序號是:①②;故選:A.【點(diǎn)睛】本題考查了簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.二、多選題23.(2023·全國·高三專題練習(xí))若非空集合G和G上的二元運(yùn)算“SKIPIF1<0”滿足:①SKIPIF1<0,SKIPIF1<0;②SKIPIF1<0,對SKIPIF1<0,SKIPIF1<0:③SKIPIF1<0,使SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0;④SKIPIF1<0,SKIPIF1<0,則稱SKIPIF1<0構(gòu)成一個群.下列選項對應(yīng)的SKIPIF1<0構(gòu)成一個群的是(
)A.集合G為自然數(shù)集,“SKIPIF1<0”為整數(shù)的加法運(yùn)算B.集合G為正有理數(shù)集,“SKIPIF1<0”為有理數(shù)的乘法運(yùn)算C.集合SKIPIF1<0(i為虛數(shù)單位),“SKIPIF1<0”為復(fù)數(shù)的乘法運(yùn)算D.集合SKIPIF1<0,“SKIPIF1<0”為求兩整數(shù)之和被7除的余數(shù)【答案】BCD【分析】根據(jù)新定義,判斷各選項中SKIPIF1<0是否滿足題中4個條件即可得.【詳解】A.SKIPIF1<0時,不滿足③,若SKIPIF1<0,則由SKIPIF1<0得SKIPIF1<0,若SKIPIF1<0,則在SKIPIF1<0中設(shè)SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0不能構(gòu)成群;B.G為正有理數(shù)集,①任意兩個正有理數(shù)的積仍然為正有理數(shù),②顯然SKIPIF1<0,對任意SKIPIF1<0,SKIPIF1<0,③對任意正有理數(shù)SKIPIF1<0,SKIPIF1<0也是正有理數(shù),且SKIPIF1<0,即SKIPIF1<0,④有理數(shù)的乘數(shù)滿足結(jié)合律,B中可構(gòu)造群;C.SKIPIF1<0(i為虛數(shù)單位),①可驗證SKIPIF1<0中任意兩數(shù)(可相等)的乘積仍然屬于SKIPIF1<0;②SKIPIF1<0,滿足任意SKIPIF1<0,有SKIPIF1<0;③SKIPIF1<0,滿足任意SKIPIF1<0,存在SKIPIF1<0,有SKIPIF1<0,實(shí)質(zhì)上有SKIPIF1<0;④復(fù)數(shù)的乘法運(yùn)算滿足結(jié)合律,C中可構(gòu)造群;D.SKIPIF1<0,①任意兩個整數(shù)的和不是整數(shù),它除以7的余數(shù)一定屬于SKIPIF1<0,②SKIPIF1<0,滿足對任意SKIPIF1<0,SKIPIF1<0,③SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0除以7余數(shù)為0;④加法滿足交換律,又SKIPIF1<0除以7的余數(shù)等于SKIPIF1<0除以7的余數(shù)加SKIPIF1<0除以7的余數(shù)的和再除以7所得余數(shù),因此SKIPIF1<0,SKIPIF1<0,D中可構(gòu)造群;故選:BCD.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查新定義,解題關(guān)鍵是理解新定義,用新定義解題.解題方法是根據(jù)新定義的4個條件進(jìn)行驗證,注意實(shí)數(shù)或復(fù)數(shù)運(yùn)算的運(yùn)算律與新定義中運(yùn)算的聯(lián)系可以很快得出結(jié)論.24.(2022·全國·高三專題練習(xí))已知集合SKIPIF1<0,SKIPIF1<0,則下列命題中正確的是(
)A.若SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0 D.若SKIPIF1<0時,則SKIPIF1<0或SKIPIF1<0【答案】ABC【分析】求出集合SKIPIF1<0,根據(jù)集合包含關(guān)系,集合相等的定義和集合的概念求解判斷.【詳解】SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,故A正確.SKIPIF1<0時,SKIPIF1<0,故D不正確.若SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0,故B正確.當(dāng)SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,故C正確.故選:ABC.25.(2023·全國·高三專題練習(xí))集合SKIPIF1<0在平面直角坐標(biāo)系中表示線段的長度之和記為SKIPIF1<0.若集合SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則下列說法中正確的有(
)A.若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0B.存在SKIPIF1<0,使SKIPIF1<0C.無論SKIPIF1<0取何值,都有SKIPIF1<0D.SKIPIF1<0的最大值為SKIPIF1<0【答案】ACD【分析】對于A,要使SKIPIF1<0,只要原點(diǎn)到直線的距離小于等于5即可,從而可求出SKIPIF1<0的取值范圍;對于B,C,由于直線SKIPIF1<0過定點(diǎn)SKIPIF1<0,而點(diǎn)SKIPIF1<0在圓SKIPIF1<0內(nèi),從而可得SKIPIF1<0;對于D,設(shè)原點(diǎn)到直線SKIPIF1<0的距離為SKIPIF1<0,則SKIPIF1<0,分母有理化后可求出其最大值,從而可判斷D【詳解】對于A,因為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,故A正確.對于B和C,直線SKIPIF1<0過定點(diǎn)SKIPIF1<0,因為SKIPIF1<0,故C正確,B錯誤.對于D,設(shè)原點(diǎn)到直線SKIPIF1<0的距離為SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0的最大值,即SKIPIF1<0的最大值,于是SKIPIF1<0的最大值為SKIPIF1<0,故D正確.故選:ACD26.(2022·全國·高三專題練習(xí))已知集合SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】AB【解析】化簡集合A,B,即得解.【詳解】SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,故選:AB【點(diǎn)睛】易錯點(diǎn)睛:化簡集合A時,容易漏掉函數(shù)的定義域,導(dǎo)致得到SKIPIF1<0,導(dǎo)致后面運(yùn)算出錯,所以函數(shù)的問題必須要注意定義域優(yōu)先的原則.27.(2020·遼寧·開原市第二高級中學(xué)三模)滿足SKIPIF1<0,且SKIPIF1<0的集合M可能是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【解析】由交集的結(jié)果知集合SKIPIF1<0一定含有元素SKIPIF1<0,一定不含有SKIPIF1<0,由此可判斷.【詳解】∵SKIPIF1<0,∴集合SKIPIF1<0一定含有元素SKIPIF1<0,一定不含有SKIPIF1<0,∴SKIPIF1<0或SKIPIF1<0.故選:AC.【點(diǎn)睛】本題考查由集合的交集求參數(shù),掌握交集的定義是解題基礎(chǔ).三、填空題28.(2023·全國·高三專題練習(xí))已知集合SKIPIF1<0,設(shè)SKIPIF1<0整除SKIPIF1<0或SKIPIF1<0整除SKIPIF1<0,令SKIPIF1<0表示集合SKIPIF1<0所含元素的個數(shù),則SKIPIF1<0_____.【答案】SKIPIF1<0【分析】根據(jù)SKIPIF1<0的定義進(jìn)行分析,從而確定正確答案.【詳解】SKIPIF1<0表示集合SKIPIF1<0所含元素的個數(shù),其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0整除SKIPIF1<0的有SKIPIF1<0共SKIPIF1<0個.SKIPIF1<0整除SKIPIF1<0的:(1)SKIPIF1<0整除SKIPIF1<0的有SKIPIF1<0個;(2)SKIPIF1<0整除SKIPIF1<0的有SKIPIF1<0個;(3)SKIPIF1<0整除SKIPIF1<0的有SKIPIF1<0個.重復(fù)的有SKIPIF1<0共SKIPIF1<0個.所以SKIPIF1<0.故答案為:SKIPIF1<029.(2022·上?!つM預(yù)測)已知復(fù)數(shù)z是方程SKIPIF1<0的一個根,集合SKIPIF1<0,若在集合M中任取兩個數(shù),則其和為零的概率為_________.【答案】SKIPIF1<0【分析】由題意解出SKIPIF1<0,根據(jù)復(fù)數(shù)的乘方以及集合的互異性確定SKIPIF1<0,根據(jù)古典概型處理運(yùn)算.【詳解】SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0當(dāng)SKIPIF1<0時,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則集合SKIPIF1<0有4個元素:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0若在集合M中任取兩個數(shù),共有如下可能:SKIPIF1<0,共6個基本事件,其和為零的有SKIPIF1<0,共2個基本事件,則其和為零的概率為SKIPIF1<0故答案為:SKIPIF1<0.30.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0的部分圖象如圖所示,將函數(shù)SKIPIF1<0的圖象向右平移SKIPIF1<0個單位長度,得到函數(shù)SKIPIF1<0的圖象,若集合SKIPIF1<0,集合SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0【分析】根據(jù)圖像求出g(x)的解析式,再求出f(x)解析式,求出A集合,根據(jù)集合交集運(yùn)算法則計算即可.【詳解】由圖可知SKIPIF1<0周期SKIPIF1<0,∴SKIPIF1<0.由SKIPIF1<0得SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴k取0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故答案為:SKIPIF1<0﹒四、解答題31.(2021·北京·首都師范大學(xué)附屬中學(xué)高三階段練習(xí))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,記SKIPIF1<0,用SKIPIF1<0表示有限集合SKIPIF1<0的元素個數(shù).(I)若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0;(II)若SKIPIF1<0,SKIPIF1<0,則對于任意的SKIPIF1<0,是否都存在SKIPIF1<0,使得SKIPIF1<0?說明理由;(III)若SKIPIF1<0,對于任意的SKIPIF1<0,都存在SKIPIF1<0,使得SKIPIF1<0,求SKIPIF1<0的最小值.【答案】(I)SKIPIF1<0,或SKIPIF1<0,或SKIPIF1<0;(II)不一定存在,見解析;(III)11.【分析】(I)由已知得SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0相差2,由此可求得T;(II)當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0相差不可能1,2,3,4,5,6,可得結(jié)論.(III)因為SKIPIF1<0,故集合A中的元素的差的絕對值至多有10種,可得SKIPIF1<0的最小值.【詳解】(I)若SKIPIF1<0,則SKIPIF1<0,其中SKIPIF1<0,否則SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0相差2,所以SKIPIF1<0,或SKIPIF1<0,或SKIPIF1<0;(II)不一定存在,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0相差不可能1,2,3,4,5,6,這與SKIPIF1<0矛盾,故不都存在T.(III)因為SKIPIF1<0,故集合A中的元素的差的絕對值至多有10種,當(dāng)SKIPIF1<0時,結(jié)論都成立;當(dāng)SKIPIF1<0時,不存在SKIPIF1<0,SKIPIF1<0,使得A中任意兩個元素差不同,所以當(dāng)SKIPIF1<0時,結(jié)論成立;當(dāng)SKIPIF1<0時,若SKIPIF1<0,則不存在T,所以SKIPIF1<0的最小值為11.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查集合的新定義,解決此類問題的關(guān)鍵在于準(zhǔn)確理解集合的新定義,緊扣定義解決問題.32.(2022·北京八中高三開學(xué)考試)已知有限集X,Y,定義集合SKIPIF1<0,SKIPIF1<0表示集合X中的元素個數(shù).(1)若SKIPIF1<0,求集合SKIPIF1<0和SKIPIF1<0,以及SKIPIF1<0的值;(2)給定正整數(shù)n,集合SKIPIF1<0,對于實(shí)數(shù)集的非空有限子集A,B,定義集合SKIPIF1<0①求證:SKIPIF1<0;②求SKIPIF1<0的最小值.【答案】(1)X-Y={1,2},Y-X={5},|(X-Y)∪(Y∪X)|=3;(2)①見解析;②SKIPIF1<0【分析】(1)直接根據(jù)定義求解即可;(2)①分若A∪B中含有一個不在S中的元素和SKIPIF1<0,且SKIPIF1<0,兩種情況討論即可,當(dāng)SKIPIF1<0,且SKIPIF1<0時,可通過SKIPIF1<0得證;②結(jié)合①知SKIPIF1<0SKIPIF1<0,討論若SKIPIF1<0,或SKIPIF1<0,得SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,可證得SKIPIF1<0的最小值是SKIPIF1<0【詳解】(1)根據(jù)定義直接得X-Y={1,2},Y-X={5},|(X-Y)∪(Y∪X)|=3.(2)①顯然SKIPIF1<0.若A∪B中含有一個不在S中的元素,則SKIPIF1<0,即SKIPIF1<0.若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0此時A中最小的元素SKIPIF1<0,B中最小的元素SKIPIF1<0,所以C中最小的元素SKIPIF1<0.所以SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.綜上,SKIPIF1<0.②由①知SKIPIF1<0.所以SKIPIF1<0SKIPIF1<0SKIPIF1<0若SKIPIF1<0,或SKIPIF1<0,則SKIPIF1<0若SKIPIF1<0,且SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0若SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0這SKIPIF1<0個數(shù)一定在集中C中,且均不等于1.所以SKIPIF1<0所以SKIPIF1<0SKIPIF1<0當(dāng)SKI
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報參考:建構(gòu)自主知識體系視域下的檔案學(xué)術(shù)語革命研究
- 2025版委托擔(dān)保合同樣本:醫(yī)療器械注冊融資擔(dān)保協(xié)議6篇
- 2025版小學(xué)學(xué)生安全責(zé)任追究與保障協(xié)議15篇
- 二零二五版煤炭行業(yè)運(yùn)輸成本控制協(xié)議4篇
- 2025年貨運(yùn)從業(yè)資格證網(wǎng)上考核app
- 2025年度文化創(chuàng)意產(chǎn)業(yè)合作合同4篇
- 個人住宅租賃合同模板(2024年修訂版)版B版
- 2025版?zhèn)€人小產(chǎn)權(quán)房屋買賣合同范本及操作指南4篇
- 2024物業(yè)公司提供住宅小區(qū)互聯(lián)網(wǎng)接入服務(wù)合同
- 2025版學(xué)校浴池?zé)崴?yīng)系統(tǒng)優(yōu)化承包合同3篇
- 南通市2025屆高三第一次調(diào)研測試(一模)地理試卷(含答案 )
- 2025年上海市閔行區(qū)中考數(shù)學(xué)一模試卷
- 2025中國人民保險集團(tuán)校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 重癥患者家屬溝通管理制度
- 法規(guī)解讀丨2024新版《突發(fā)事件應(yīng)對法》及其應(yīng)用案例
- IF鋼物理冶金原理與關(guān)鍵工藝技術(shù)1
- 小學(xué)二年級數(shù)學(xué)口算練習(xí)題1000道
- 化學(xué)-福建省龍巖市2024屆高三下學(xué)期三月教學(xué)質(zhì)量檢測(一模)試題和答案
- 凸優(yōu)化在經(jīng)濟(jì)學(xué)與金融學(xué)中的應(yīng)用
- 家譜、宗譜頒譜慶典講話
- 高速公路收費(fèi)員培訓(xùn)課件
評論
0/150
提交評論