版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁北京郵電大學(xué)
《計(jì)算機(jī)視覺》2020-2021學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,持續(xù)跟蹤視頻中的特定目標(biāo)。假設(shè)要跟蹤一個(gè)在人群中行走的人,以下關(guān)于目標(biāo)跟蹤方法的描述,哪一項(xiàng)是不正確的?()A.基于濾波的方法,如卡爾曼濾波和粒子濾波,可以預(yù)測(cè)目標(biāo)的位置和狀態(tài)B.基于深度學(xué)習(xí)的方法能夠?qū)W習(xí)目標(biāo)的外觀特征,提高跟蹤的準(zhǔn)確性和魯棒性C.目標(biāo)跟蹤過程中,目標(biāo)的外觀變化、遮擋和背景干擾等因素不會(huì)對(duì)跟蹤結(jié)果產(chǎn)生影響D.結(jié)合多種特征和算法的融合跟蹤方法,可以綜合利用不同方法的優(yōu)勢(shì),提高跟蹤性能2、在計(jì)算機(jī)視覺的應(yīng)用于自動(dòng)駕駛領(lǐng)域,需要實(shí)時(shí)檢測(cè)道路上的交通標(biāo)志和標(biāo)線。假設(shè)車輛在高速行駛中,以下哪種技術(shù)能夠快速準(zhǔn)確地檢測(cè)到各種交通標(biāo)志,并且對(duì)光照變化和遮擋具有較強(qiáng)的魯棒性?()A.基于顏色和形狀特征的檢測(cè)方法B.基于深度學(xué)習(xí)的檢測(cè)方法,結(jié)合多尺度特征C.基于邊緣檢測(cè)和形態(tài)學(xué)操作的方法D.基于模板匹配和特征點(diǎn)匹配的方法3、在計(jì)算機(jī)視覺的醫(yī)學(xué)圖像分析中,例如對(duì)腫瘤的檢測(cè)和分割。假設(shè)醫(yī)學(xué)圖像的質(zhì)量較差,存在噪聲和偽影,以下哪種預(yù)處理方法可能有助于提高后續(xù)分析的準(zhǔn)確性?()A.圖像平滑B.圖像銳化C.圖像二值化D.圖像翻轉(zhuǎn)4、在計(jì)算機(jī)視覺的圖像生成任務(wù)中,除了生成新的圖像,還可以對(duì)已有圖像進(jìn)行風(fēng)格轉(zhuǎn)換。假設(shè)我們要將一張照片轉(zhuǎn)換為油畫風(fēng)格,以下哪種方法能夠?qū)崿F(xiàn)逼真的風(fēng)格轉(zhuǎn)換效果?()A.基于圖像濾波和變換的方法B.基于深度學(xué)習(xí)的風(fēng)格遷移算法,如CycleGANC.基于圖像融合和合成的方法D.基于顏色映射和紋理合成的方法5、計(jì)算機(jī)視覺中的視頻理解任務(wù)包括對(duì)視頻內(nèi)容的分析和解釋。假設(shè)要理解一段新聞視頻的主要內(nèi)容和事件發(fā)展。以下關(guān)于視頻理解的描述,哪一項(xiàng)是不正確的?()A.可以通過對(duì)視頻中的幀進(jìn)行分類、目標(biāo)檢測(cè)和跟蹤來實(shí)現(xiàn)視頻理解B.深度學(xué)習(xí)中的注意力機(jī)制可以幫助聚焦視頻中的關(guān)鍵信息,提高理解的準(zhǔn)確性C.視頻理解只需要關(guān)注視覺信息,不需要考慮音頻和文字等其他模態(tài)的信息D.可以結(jié)合知識(shí)圖譜和語義理解技術(shù),對(duì)視頻中的內(nèi)容進(jìn)行更深入的分析和解釋6、計(jì)算機(jī)視覺中的視頻分析需要對(duì)連續(xù)的圖像幀進(jìn)行處理和理解。假設(shè)要分析一段監(jiān)控視頻中的人群行為,包括行走方向、聚集和分散等。以下哪種視頻分析技術(shù)在處理這種復(fù)雜的群體行為時(shí)最為有效?()A.幀間差分法B.背景減除法C.光流法結(jié)合軌跡分析D.深度學(xué)習(xí)的行為識(shí)別模型7、在計(jì)算機(jī)視覺的車牌識(shí)別任務(wù)中,假設(shè)要從不同角度和光照條件下拍攝的車輛圖像中準(zhǔn)確識(shí)別出車牌號(hào)碼。以下哪種技術(shù)可能有助于提高識(shí)別準(zhǔn)確率?()A.字符分割和單獨(dú)識(shí)別B.利用深度學(xué)習(xí)模型進(jìn)行端到端的識(shí)別C.只關(guān)注車牌的顏色特征D.隨機(jī)猜測(cè)車牌號(hào)碼8、在計(jì)算機(jī)視覺的車牌識(shí)別任務(wù)中,需要從車輛圖像中準(zhǔn)確提取車牌號(hào)碼。假設(shè)車牌存在傾斜、變形和光照不均等問題。以下哪種車牌識(shí)別方法在應(yīng)對(duì)這些挑戰(zhàn)時(shí)表現(xiàn)更為出色?()A.基于字符分割的車牌識(shí)別B.基于模板匹配的車牌識(shí)別C.基于深度學(xué)習(xí)的車牌識(shí)別D.基于特征提取的車牌識(shí)別9、計(jì)算機(jī)視覺在文物保護(hù)和修復(fù)中的應(yīng)用逐漸增多。假設(shè)要對(duì)一幅古老的繪畫進(jìn)行數(shù)字化修復(fù)和增強(qiáng),以下關(guān)于顏色恢復(fù)的挑戰(zhàn),哪一項(xiàng)是最為顯著的?()A.由于年代久遠(yuǎn),原畫作的顏色信息缺失嚴(yán)重B.不同區(qū)域的顏色褪色程度不一致,難以統(tǒng)一恢復(fù)C.缺乏對(duì)原畫作創(chuàng)作時(shí)所用顏料的了解,難以準(zhǔn)確還原顏色D.修復(fù)過程中可能引入新的顏色偏差,影響修復(fù)效果10、計(jì)算機(jī)視覺在衛(wèi)星遙感圖像分析中的應(yīng)用可以幫助監(jiān)測(cè)地球環(huán)境和資源。假設(shè)要通過衛(wèi)星圖像分析森林的覆蓋面積變化。以下關(guān)于計(jì)算機(jī)視覺在衛(wèi)星遙感中的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過圖像分類和分割技術(shù)區(qū)分森林、草地和建筑物等不同地物類型B.能夠?qū)Χ鄷r(shí)相的衛(wèi)星圖像進(jìn)行比較,監(jiān)測(cè)森林的生長(zhǎng)和砍伐情況C.計(jì)算機(jī)視覺在衛(wèi)星遙感中的應(yīng)用不受衛(wèi)星圖像的分辨率和光譜信息的限制D.可以結(jié)合地理信息系統(tǒng)(GIS)數(shù)據(jù),進(jìn)行更深入的空間分析和決策支持11、在計(jì)算機(jī)視覺的圖像修復(fù)任務(wù)中,假設(shè)要填補(bǔ)圖像中缺失或損壞的部分。以下哪種方法可能更有效地恢復(fù)圖像的完整性和真實(shí)性?()A.基于擴(kuò)散的修復(fù)方法B.基于深度學(xué)習(xí)的圖像修復(fù)模型,如ContextEncoderC.用固定的圖案或顏色填充缺失部分D.不進(jìn)行修復(fù),保留圖像的缺失部分12、計(jì)算機(jī)視覺在工業(yè)檢測(cè)中的應(yīng)用越來越廣泛。假設(shè)要檢測(cè)電子電路板上的微小缺陷,以下關(guān)于圖像采集設(shè)備的選擇,哪一項(xiàng)是最為關(guān)鍵的?()A.選擇高分辨率的數(shù)碼相機(jī),獲取清晰的圖像B.選用具有大景深的鏡頭,確保整個(gè)電路板都清晰成像C.采用高速攝像機(jī),快速采集大量圖像D.選擇價(jià)格低廉的圖像采集設(shè)備,降低成本13、圖像分類是計(jì)算機(jī)視覺的基礎(chǔ)任務(wù)之一。假設(shè)要對(duì)大量的自然風(fēng)景圖片進(jìn)行分類,包括山脈、森林、海灘等不同類型,同時(shí)圖片可能存在不同的拍攝角度、光照條件和季節(jié)變化。為了能夠準(zhǔn)確地對(duì)這些圖片進(jìn)行分類,以下哪種特征提取方法與分類算法的組合最為有效?()A.SIFT特征+支持向量機(jī)B.HOG特征+決策樹C.卷積神經(jīng)網(wǎng)絡(luò)自動(dòng)提取特征+深度學(xué)習(xí)分類器D.顏色直方圖特征+樸素貝葉斯14、在圖像分類任務(wù)中,深度學(xué)習(xí)模型取得了顯著的成果。假設(shè)要對(duì)一組包含不同動(dòng)物的圖像進(jìn)行分類,以下關(guān)于圖像分類模型的描述,正確的是:()A.模型的層數(shù)越多,分類準(zhǔn)確率一定越高B.數(shù)據(jù)增強(qiáng)技術(shù),如旋轉(zhuǎn)、裁剪等,對(duì)模型的性能提升沒有幫助C.結(jié)合多種特征提取方法和分類器,可以提高圖像分類的準(zhǔn)確性和魯棒性D.圖像分類模型不需要考慮圖像的空間信息,只關(guān)注像素值的統(tǒng)計(jì)特征15、計(jì)算機(jī)視覺中的語義分割旨在為圖像中的每個(gè)像素分配一個(gè)類別標(biāo)簽。假設(shè)要對(duì)醫(yī)學(xué)影像中的腫瘤區(qū)域進(jìn)行語義分割,以下關(guān)于模型評(píng)估指標(biāo)的選擇,哪一項(xiàng)是最為關(guān)鍵的?()A.準(zhǔn)確率,即正確分類的像素比例B.召回率,即正確分割出腫瘤像素的比例C.F1分?jǐn)?shù),綜合考慮準(zhǔn)確率和召回率D.平均交并比(MIoU),衡量分割結(jié)果與真實(shí)標(biāo)簽的重合程度16、計(jì)算機(jī)視覺中的圖像增強(qiáng)技術(shù)可以改善圖像質(zhì)量。假設(shè)要對(duì)一張低光照條件下拍攝的圖像進(jìn)行增強(qiáng),以下關(guān)于圖像增強(qiáng)方法的描述,正確的是:()A.簡(jiǎn)單地增加圖像的亮度就能有效改善低光照?qǐng)D像的質(zhì)量B.直方圖均衡化方法總是能夠在不引入噪聲的情況下增強(qiáng)圖像對(duì)比度C.基于深度學(xué)習(xí)的圖像增強(qiáng)方法能夠自適應(yīng)地學(xué)習(xí)到適合的增強(qiáng)策略D.圖像增強(qiáng)不會(huì)改變圖像的原始信息和內(nèi)容17、計(jì)算機(jī)視覺在自動(dòng)駕駛領(lǐng)域有重要應(yīng)用。假設(shè)要開發(fā)一個(gè)能夠識(shí)別道路標(biāo)志的系統(tǒng),以下關(guān)于應(yīng)對(duì)不同光照條件的策略,哪一項(xiàng)是最為有效的?()A.使用固定的閾值對(duì)圖像進(jìn)行二值化處理B.采用自適應(yīng)的圖像增強(qiáng)算法,根據(jù)光照情況調(diào)整圖像C.忽略光照變化,依靠模型的泛化能力D.只在特定的光照條件下收集訓(xùn)練數(shù)據(jù)18、對(duì)于圖像的語義理解任務(wù),假設(shè)要理解一張圖像所表達(dá)的場(chǎng)景和事件,例如判斷一張圖像是在舉行婚禮還是在舉辦音樂會(huì)。圖像中的信息可能比較隱晦和復(fù)雜。以下哪種方法可能有助于提高語義理解的準(zhǔn)確性?()A.構(gòu)建圖像的語義圖,分析物體之間的關(guān)系B.只關(guān)注圖像中的主要物體,忽略背景信息C.對(duì)圖像進(jìn)行簡(jiǎn)單的分類,不進(jìn)行深入的語義分析D.隨機(jī)猜測(cè)圖像的語義19、在計(jì)算機(jī)視覺的圖像壓縮任務(wù)中,需要在減少數(shù)據(jù)量的同時(shí)盡量保持圖像的質(zhì)量。假設(shè)要對(duì)一組高清圖像進(jìn)行壓縮,以節(jié)省存儲(chǔ)空間和傳輸帶寬,同時(shí)要求解壓后的圖像能夠滿足一定的視覺要求。以下哪種圖像壓縮算法在這種情況下效果較好?()A.JPEG壓縮算法B.PNG壓縮算法C.WebP壓縮算法D.BPG壓縮算法20、計(jì)算機(jī)視覺中的行人重識(shí)別任務(wù)是在不同攝像頭中識(shí)別出特定的行人。假設(shè)要在一個(gè)大型火車站中尋找一個(gè)走失的兒童。以下關(guān)于行人重識(shí)別的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以利用行人的服裝顏色、款式和攜帶物品等特征進(jìn)行重識(shí)別B.深度學(xué)習(xí)中的度量學(xué)習(xí)方法可以學(xué)習(xí)行人的特征表示,提高重識(shí)別的準(zhǔn)確率C.行人重識(shí)別不受行人姿態(tài)變化和攝像頭視角差異的影響D.可以通過構(gòu)建大規(guī)模的行人數(shù)據(jù)集進(jìn)行訓(xùn)練,提升模型的泛化能力21、在計(jì)算機(jī)視覺的圖像去噪任務(wù)中,去除圖像中的噪聲。假設(shè)要對(duì)一張受到嚴(yán)重噪聲污染的圖像進(jìn)行去噪處理,以下關(guān)于圖像去噪方法的描述,正確的是:()A.均值濾波方法能夠在去除噪聲的同時(shí)很好地保留圖像的細(xì)節(jié)B.中值濾波對(duì)椒鹽噪聲的去除效果不佳C.基于深度學(xué)習(xí)的圖像去噪方法可以自適應(yīng)地學(xué)習(xí)噪聲模式和圖像特征D.圖像去噪不會(huì)引入任何新的失真或模糊22、視頻分析是計(jì)算機(jī)視覺的一個(gè)重要領(lǐng)域。假設(shè)要對(duì)一段監(jiān)控視頻中的行為進(jìn)行分析和理解,以下關(guān)于視頻分析方法的描述,正確的是:()A.直接將視頻中的每一幀圖像作為獨(dú)立的圖像進(jìn)行處理,就能準(zhǔn)確分析視頻中的行為B.考慮視頻的時(shí)序信息和幀間的相關(guān)性對(duì)于理解復(fù)雜的行為非常重要C.視頻分析只適用于簡(jiǎn)單的動(dòng)作識(shí)別,對(duì)于復(fù)雜的多人物交互行為無法處理D.視頻的分辨率和幀率對(duì)視頻分析的結(jié)果沒有影響23、圖像分割是將圖像分成不同的區(qū)域,每個(gè)區(qū)域具有相似的特征。假設(shè)要對(duì)醫(yī)學(xué)圖像進(jìn)行器官分割,以下關(guān)于圖像分割方法的描述,哪一項(xiàng)是不正確的?()A.基于閾值的分割方法簡(jiǎn)單直接,但對(duì)于復(fù)雜圖像效果往往不佳B.基于邊緣檢測(cè)的分割方法通過尋找圖像中的邊緣來劃分區(qū)域,但容易受到噪聲影響C.基于深度學(xué)習(xí)的語義分割方法能夠?qū)崿F(xiàn)像素級(jí)別的分類,效果較好,但計(jì)算量較大D.圖像分割只適用于灰度圖像,對(duì)于彩色圖像無法進(jìn)行有效的分割24、計(jì)算機(jī)視覺在工業(yè)檢測(cè)中的應(yīng)用可以提高產(chǎn)品質(zhì)量和生產(chǎn)效率。假設(shè)要檢測(cè)生產(chǎn)線上的零件是否存在缺陷,以下關(guān)于工業(yè)檢測(cè)中的計(jì)算機(jī)視覺應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.可以使用機(jī)器視覺系統(tǒng)對(duì)零件進(jìn)行實(shí)時(shí)檢測(cè),快速發(fā)現(xiàn)缺陷B.深度學(xué)習(xí)模型能夠自動(dòng)學(xué)習(xí)正常零件和缺陷零件的特征差異,實(shí)現(xiàn)準(zhǔn)確的缺陷檢測(cè)C.工業(yè)檢測(cè)中的計(jì)算機(jī)視覺系統(tǒng)需要具備高度的準(zhǔn)確性和穩(wěn)定性,能夠適應(yīng)不同的生產(chǎn)環(huán)境D.計(jì)算機(jī)視覺在工業(yè)檢測(cè)中只能檢測(cè)外觀缺陷,對(duì)于零件的內(nèi)部結(jié)構(gòu)和性能無法進(jìn)行評(píng)估25、計(jì)算機(jī)視覺在無人駕駛中的應(yīng)用至關(guān)重要。假設(shè)要通過車載攝像頭識(shí)別道路上的交通標(biāo)志和標(biāo)線,以下關(guān)于應(yīng)對(duì)復(fù)雜環(huán)境變化的策略,哪一項(xiàng)是不正確的?()A.利用多模態(tài)數(shù)據(jù)融合,如結(jié)合攝像頭和激光雷達(dá)的信息B.定期更新模型,適應(yīng)新出現(xiàn)的交通標(biāo)志和標(biāo)線C.只依靠單一攝像頭的圖像信息,不考慮其他傳感器D.對(duì)不同天氣和光照條件下的數(shù)據(jù)進(jìn)行增強(qiáng)訓(xùn)練26、在計(jì)算機(jī)視覺的人臉識(shí)別任務(wù)中,需要應(yīng)對(duì)姿態(tài)、表情和光照等變化。假設(shè)要構(gòu)建一個(gè)能夠在不同環(huán)境下準(zhǔn)確識(shí)別人臉的系統(tǒng),以下哪種人臉識(shí)別方法在處理這些變化時(shí)具有更高的準(zhǔn)確性和魯棒性?()A.基于特征點(diǎn)的人臉識(shí)別B.基于模板匹配的人臉識(shí)別C.基于深度學(xué)習(xí)的人臉識(shí)別D.基于幾何形狀的人臉識(shí)別27、在計(jì)算機(jī)視覺的應(yīng)用于農(nóng)業(yè)領(lǐng)域,例如作物監(jiān)測(cè)和病蟲害檢測(cè),需要對(duì)大量的田間圖像進(jìn)行分析。假設(shè)我們要檢測(cè)農(nóng)作物葉片上的病蟲害癥狀,以下哪種技術(shù)能夠?qū)崿F(xiàn)快速、準(zhǔn)確的檢測(cè),并且適應(yīng)不同的生長(zhǎng)階段和環(huán)境條件?()A.基于傳統(tǒng)圖像分割和特征提取的方法B.基于深度學(xué)習(xí)的目標(biāo)檢測(cè)和分類算法,針對(duì)病蟲害特征訓(xùn)練C.基于光譜分析和顏色特征的方法D.基于機(jī)器視覺和模式識(shí)別的方法28、在計(jì)算機(jī)視覺的目標(biāo)識(shí)別任務(wù)中,假設(shè)目標(biāo)物體被部分遮擋,以下哪種模型架構(gòu)可能更有助于恢復(fù)被遮擋部分的信息?()A.多層感知機(jī)(MLP)B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)D.注意力機(jī)制(AttentionMechanism)29、計(jì)算機(jī)視覺中的光流估計(jì)用于計(jì)算圖像中像素的運(yùn)動(dòng)信息。假設(shè)我們要分析一個(gè)視頻中物體的運(yùn)動(dòng)速度和方向,以下哪種光流估計(jì)算法在復(fù)雜場(chǎng)景下能夠提供更準(zhǔn)確的結(jié)果?()A.Lucas-Kanade算法B.Horn-Schunck算法C.Farneback算法D.DeepFlow算法30、計(jì)算機(jī)視覺中的圖像修復(fù)旨在恢復(fù)圖像中缺失或損壞的部分。假設(shè)一張珍貴的老照片有部分區(qū)域損壞,需要進(jìn)行修復(fù)以還原其完整的內(nèi)容。以下哪種圖像修復(fù)方法在處理這種情況時(shí)能夠生成更自然和逼真的結(jié)果?()A.基于擴(kuò)散的圖像修復(fù)B.基于紋理合成的圖像修復(fù)C.基于深度學(xué)習(xí)的圖像修復(fù)D.基于樣例的圖像修復(fù)二、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)利用深度學(xué)習(xí)算法,對(duì)不同種類的果脯圖像進(jìn)行分類。2、(本題5分)利用目標(biāo)檢測(cè)算法,在天文圖像中檢測(cè)星系。3、(本題5分)運(yùn)用圖像識(shí)別算法,對(duì)不同類型的交通工具圖像進(jìn)行分類和識(shí)別。4、(本題5分)使用目標(biāo)跟蹤算法,跟蹤雜技表演中演員的技巧動(dòng)作。5、(本題5分)使用目標(biāo)檢測(cè)技術(shù),從環(huán)保監(jiān)測(cè)圖像中檢測(cè)出污染源。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 金融行業(yè)數(shù)據(jù)安全保障協(xié)議
- 旅游產(chǎn)品預(yù)訂與退改服務(wù)協(xié)議
- 醫(yī)療器械供應(yīng)與服務(wù)協(xié)議
- 企業(yè)不良資產(chǎn)處置合同
- 酒店投資與管理合同
- 人工智能產(chǎn)品研發(fā)合作合同
- 智能醫(yī)療設(shè)備開發(fā)合同
- 保管合同保管物損耗
- 境外借款合同
- 在線教育平臺(tái)課程結(jié)業(yè)證書查詢系統(tǒng)補(bǔ)辦協(xié)議
- 鐵工電〔2023〕54號(hào)國(guó)鐵集團(tuán)關(guān)于印發(fā)《普速鐵路工務(wù)安全規(guī)則》的通知
- 事業(yè)單位工作人員處分暫行規(guī)定2012
- 事業(yè)單位年度考核實(shí)施方案
- CJJ 169-2012城鎮(zhèn)道路路面設(shè)計(jì)規(guī)范
- 現(xiàn)代機(jī)械工程圖學(xué) 課件 第10章-裝配圖
- 新概念英語第一冊(cè)1-72課測(cè)試題
- 天貓售后工作總結(jié)
- 國(guó)賽一等獎(jiǎng)經(jīng)驗(yàn)分享
- 2024年試驗(yàn)箱行業(yè)未來三年發(fā)展洞察報(bào)告
- 江西省萍鄉(xiāng)市2023-2024學(xué)年高一上學(xué)期期末生物試題
- 《性格決定命運(yùn)》課件
評(píng)論
0/150
提交評(píng)論