版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
吉林省扶余市一中2025屆高三第五次模擬考試數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,,.若實數(shù),滿足不等式組,則目標函數(shù)()A.有最大值,無最小值 B.有最大值,有最小值C.無最大值,有最小值 D.無最大值,無最小值2.若,滿足約束條件,則的最大值是()A. B. C.13 D.3.雙曲線的漸近線方程為()A. B.C. D.4.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學家、數(shù)學家和物理學家,他和高斯、牛頓并列被稱為世界三大數(shù)學家.據(jù)說,他自己覺得最為滿意的一個數(shù)學發(fā)現(xiàn)就是“圓柱內(nèi)切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個結論,要求后人在他的墓碑上刻著一個圓柱容器里放了一個球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.5.雙曲線的漸近線方程為()A. B. C. D.6.已知的共軛復數(shù)是,且(為虛數(shù)單位),則復數(shù)在復平面內(nèi)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.《九章算術》是我國古代數(shù)學名著,書中有如下問題:“今有勾六步,股八步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長分別為6步和8步,問其內(nèi)切圓的直徑為多少步?”現(xiàn)從該三角形內(nèi)隨機取一點,則此點取自內(nèi)切圓的概率是()A. B. C. D.8.已知等比數(shù)列的前項和為,若,且公比為2,則與的關系正確的是()A. B.C. D.9.已知函數(shù),,若,對任意恒有,在區(qū)間上有且只有一個使,則的最大值為()A. B. C. D.10.已知集合,則=()A. B. C. D.11.已知半徑為2的球內(nèi)有一個內(nèi)接圓柱,若圓柱的高為2,則球的體積與圓柱的體積的比為()A. B. C. D.12.已知數(shù)列中,,(),則等于()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知圓,直線與圓交于兩點,,若,則弦的長度的最大值為_______.14.設,滿足條件,則的最大值為__________.15.已知平面向量、的夾角為,且,則的最大值是_____.16.不等式對于定義域內(nèi)的任意恒成立,則的取值范圍為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知為坐標原點,單位圓與角終邊的交點為,過作平行于軸的直線,設與終邊所在直線的交點為,.(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的值域.18.(12分)車工劉師傅利用數(shù)控車床為某公司加工一種高科技易損零件,對之前加工的100個零件的加工時間進行統(tǒng)計,結果如下:加工1個零件用時(分鐘)20253035頻數(shù)(個)15304015以加工這100個零件用時的頻率代替概率.(1)求的分布列與數(shù)學期望;(2)劉師傅準備給幾個徒弟做一個加工該零件的講座,用時40分鐘,另外他打算在講座前、講座后各加工1個該零件作示范.求劉師傅講座及加工2個零件作示范的總時間不超過100分鐘的概率.19.(12分)已知函數(shù),它的導函數(shù)為.(1)當時,求的零點;(2)當時,證明:.20.(12分)如圖,四棱錐E﹣ABCD的側棱DE與四棱錐F﹣ABCD的側棱BF都與底面ABCD垂直,,//,.(1)證明://平面BCE.(2)設平面ABF與平面CDF所成的二面角為θ,求.21.(12分)某中學為研究學生的身體素質與體育鍛煉時間的關系,對該校名高三學生平均每天體育鍛煉時間進行調查,如表:(平均每天鍛煉的時間單位:分鐘)將學生日均體育鍛煉時間在的學生評價為“鍛煉達標”.(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表:并通過計算判斷,是否能在犯錯誤的概率不超過的前提下認為“鍛煉達標”與性別有關?(2)在“鍛煉達標”的學生中,按男女用分層抽樣方法抽出人,進行體育鍛煉體會交流.(i)求這人中,男生、女生各有多少人?(ii)從參加體會交流的人中,隨機選出人發(fā)言,記這人中女生的人數(shù)為,求的分布列和數(shù)學期望.參考公式:,其中.臨界值表:0.100.050.0250.01002.7063.8415.0246.63522.(10分)設的內(nèi)角的對邊分別為,已知.(1)求;(2)若為銳角三角形,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
判斷直線與縱軸交點的位置,畫出可行解域,即可判斷出目標函數(shù)的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標函數(shù)一定有最大值和最小值.故選:B【點睛】本題考查了目標函數(shù)最值是否存在問題,考查了數(shù)形結合思想,考查了不等式的性質應用.2、C【解析】
由已知畫出可行域,利用目標函數(shù)的幾何意義求最大值.【詳解】解:表示可行域內(nèi)的點到坐標原點的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點到坐標原點的距離最大,即.故選:.【點睛】本題考查線性規(guī)劃問題,考查數(shù)形結合的數(shù)學思想以及運算求解能力,屬于基礎題.3、A【解析】
將雙曲線方程化為標準方程為,其漸近線方程為,化簡整理即得漸近線方程.【詳解】雙曲線得,則其漸近線方程為,整理得.故選:A【點睛】本題主要考查了雙曲線的標準方程,雙曲線的簡單性質的應用.4、C【解析】
設球的半徑為R,根據(jù)組合體的關系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C【點睛】本題主要考查組合體的表面積和體積,還考查了對數(shù)學史了解,屬于基礎題.5、C【解析】
根據(jù)雙曲線的標準方程,即可寫出漸近線方程.【詳解】雙曲線,雙曲線的漸近線方程為,故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于容易題.6、D【解析】
設,整理得到方程組,解方程組即可解決問題.【詳解】設,因為,所以,所以,解得:,所以復數(shù)在復平面內(nèi)對應的點為,此點位于第四象限.故選D【點睛】本題主要考查了復數(shù)相等、復數(shù)表示的點知識,考查了方程思想,屬于基礎題.7、C【解析】
利用直角三角形三邊與內(nèi)切圓半徑的關系求出半徑,再分別求出三角形和內(nèi)切圓的面積,根據(jù)幾何概型的概率計算公式,即可求解.【詳解】由題意,直角三角形的斜邊長為,利用等面積法,可得其內(nèi)切圓的半徑為,所以向次三角形內(nèi)投擲豆子,則落在其內(nèi)切圓內(nèi)的概率為.故選:C.【點睛】本題主要考查了面積比的幾何概型的概率的計算問題,其中解答中熟練應用直角三角形的性質,求得其內(nèi)切圓的半徑是解答的關鍵,著重考查了推理與運算能力.8、C【解析】
在等比數(shù)列中,由即可表示之間的關系.【詳解】由題可知,等比數(shù)列中,且公比為2,故故選:C【點睛】本題考查等比數(shù)列求和公式的應用,屬于基礎題.9、C【解析】
根據(jù)的零點和最值點列方程組,求得的表達式(用表示),根據(jù)在上有且只有一個最大值,求得的取值范圍,求得對應的取值范圍,由為整數(shù)對的取值進行驗證,由此求得的最大值.【詳解】由題意知,則其中,.又在上有且只有一個最大值,所以,得,即,所以,又,因此.①當時,,此時取可使成立,當時,,所以當或時,都成立,舍去;②當時,,此時取可使成立,當時,,所以當或時,都成立,舍去;③當時,,此時取可使成立,當時,,所以當時,成立;綜上所得的最大值為.故選:C【點睛】本小題主要考查三角函數(shù)的零點和最值,考查三角函數(shù)的性質,考查化歸與轉化的數(shù)學思想方法,考查分類討論的數(shù)學思想方法,屬于中檔題.10、D【解析】
先求出集合A,B,再求集合B的補集,然后求【詳解】,所以.故選:D【點睛】此題考查的是集合的并集、補集運算,屬于基礎題.11、D【解析】
分別求出球和圓柱的體積,然后可得比值.【詳解】設圓柱的底面圓半徑為,則,所以圓柱的體積.又球的體積,所以球的體積與圓柱的體積的比,故選D.【點睛】本題主要考查幾何體的體積求解,側重考查數(shù)學運算的核心素養(yǎng).12、A【解析】
分別代值計算可得,觀察可得數(shù)列是以3為周期的周期數(shù)列,問題得以解決.【詳解】解:∵,(),
,
,
,
,
…,
∴數(shù)列是以3為周期的周期數(shù)列,
,
,
故選:A.【點睛】本題考查數(shù)列的周期性和運用:求數(shù)列中的項,考查運算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設為的中點,根據(jù)弦長公式,只需最小,在中,根據(jù)余弦定理將表示出來,由,得到,結合弦長公式得到,求出點的軌跡方程,即可求解.【詳解】設為的中點,在中,,①在中,,②①②得,即,,.,得.所以,.故答案為:.【點睛】本題考查直線與圓的位置關系、相交弦長的最值,解題的關鍵求出點的軌跡方程,考查計算求解能力,屬于中檔題.14、【解析】
作出可行域,由得,平移直線,數(shù)形結合可求的最大值.【詳解】作出可行域如圖所示由得,則是直線在軸上的截距.平移直線,當直線經(jīng)過可行域內(nèi)的點時,最小,此時最大.解方程組,得,..故答案為:.【點睛】本題考查簡單的線性規(guī)劃,屬于基礎題.15、【解析】
建立平面直角坐標系,設,可得,進而可得出,,由此將轉化為以為自變量的三角函數(shù),利用三角恒等變換思想以及正弦函數(shù)的有界性可得出結果.【詳解】根據(jù)題意建立平面直角坐標系如圖所示,設,,以、為鄰邊作平行四邊形,則,設,則,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,則,當時,取最大值.故答案為:.【點睛】本題考查了向量的數(shù)量積最值的計算,將問題轉化為角的三角函數(shù)的最值問題是解答的關鍵,考查計算能力,屬于難題.16、【解析】
根據(jù)題意,分離參數(shù),轉化為只對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,利用放縮法,得出,化簡后得出,即可得出的取值范圍.【詳解】解:已知對于定義域內(nèi)的任意恒成立,即對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,,,當時取等號,由可知,,當時取等號,,當有解時,令,則,在上單調遞增,又,,使得,,則,所以的取值范圍為.故答案為:.【點睛】本題考查利用導數(shù)研究函數(shù)單調性和最值,解決恒成立問題求參數(shù)值,涉及分離參數(shù)法和放縮法,考查轉化能力和計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)題意,求得,,因而得出,利用降冪公式和二倍角的正弦公式化簡函數(shù),最后利用,求出的最小正周期;(2)由(1)得,再利用整體代入求出函數(shù)的值域.【詳解】(1)因為,,所以,,所以函數(shù)的最小正周期為.(2)因為,所以,所以,故函數(shù)在區(qū)間上的值域為.【點睛】本題考查正弦型函數(shù)的周期和值域,運用到向量的坐標運算、降冪公式和二倍角的正弦公式,考查化簡和計算能力.18、(1)分布列見解析,;(2)0.8575【解析】
(1)根據(jù)題目所給數(shù)據(jù)求得分布列,并計算出數(shù)學期望.(2)根據(jù)對立事件概率計算公式、相互獨立事件概率計算公式,計算出劉師傅講座及加工個零件作示范的總時間不超過分鐘的概率.【詳解】(1)的分布列如下:202530350.150.300.400.15.(2)設,分別表示講座前、講座后加工該零件所需時間,事件表示“留師傅講座及加工兩個零件示范的總時間不超過100分鐘”,則.【點睛】本小題主要考查隨機變量分布列和數(shù)學期望的求法,考查對立事件概率計算,考查相互獨立事件概率計算,屬于中檔題.19、(1)見解析;(2)證明見解析.【解析】
當時,求函數(shù)的導數(shù),判斷導函數(shù)的單調性,計算即為導函數(shù)的零點;
當時,分類討論x的范圍,可令新函數(shù),計算新函數(shù)的最值可證明.【詳解】(1)的定義域為當時,,,易知為上的增函數(shù),又,所以是的唯一零點;(2)證明:當時,,①若,則,所以成立,②若,設,則,令,則,因為,所以,從而在上單調遞增,所以,即,在上單調遞增;所以,即,故.【點睛】本題主要考查導數(shù)法研究函數(shù)的單調性,單調性,零點的求法.注意分類討論和構造新函數(shù)求函數(shù)的最值的應用.20、(1)證明見解析(2)【解析】
(1)根據(jù)線面垂直的性質定理,可得DE//BF,然后根據(jù)勾股定理計算可得BF=DE,最后利用線面平行的判定定理,可得結果.(2)利用建系的方法,可得平面ABF的一個法向量為,平面CDF的法向量為,然后利用向量的夾角公式以及平方關系,可得結果.【詳解】(1)因為DE⊥平面ABCD,所以DEAD,因為AD=4,AE=5,DE=3,同理BF=3,又DE⊥平面ABCD,BF⊥平面ABCD,所以DE//BF,又BF=DE,所以平行四邊形BEDF,故DF//BE,因為BE平面BCE,DF平面BCE所以DF//平面BCE;(2)建立如圖空間直角坐標系,則D(0,0,0),A(4,0,0),C(0,4,0),F(xiàn)(4,3,﹣3),,設平面CDF的法向量為,由,令x=3,得,易知平面ABF的一個法向量為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 濱州學院《稅務籌劃》2023-2024學年第一學期期末試卷
- 濱州學院《合唱指揮法(一)》2023-2024學年第一學期期末試卷
- 濱州科技職業(yè)學院《微分方程2》2023-2024學年第一學期期末試卷
- 畢節(jié)職業(yè)技術學院《地下水污染與防治》2023-2024學年第一學期期末試卷
- 濱州醫(yī)學院《機器學習算法》2023-2024學年第一學期期末試卷
- 軟件銷售服務合同
- 選修和諧勞動關系構建及勞動合同法解讀自測題
- 2025年廠房租賃及節(jié)能改造合同文本3篇
- 2024至2030年不處理膠輥項目投資價值分析報告
- 物流運輸合同非常詳盡
- 醫(yī)保信息系統(tǒng)管理制度范文
- 戶口未婚改已婚委托書
- 售后響應時間保障措施
- 《工業(yè)數(shù)據(jù)采集技術》課程標準
- 智慧農(nóng)業(yè)的無人機與遙感技術
- 河北省石家莊市2023-2024學年高一上學期期末教學質量檢測生物試題(含答案解析)
- 循證護理在骨科中的護理
- 心肺復蘇應急演練腳本
- 華南理工大學2022年622物理化學考研真題(含答案)
- 抖音認證承諾函
- 建筑垃圾安全生產(chǎn)管理制度范本
評論
0/150
提交評論