2024年滬教版高一數(shù)學(xué)下冊(cè)階段測(cè)試試卷含答案_第1頁(yè)
2024年滬教版高一數(shù)學(xué)下冊(cè)階段測(cè)試試卷含答案_第2頁(yè)
2024年滬教版高一數(shù)學(xué)下冊(cè)階段測(cè)試試卷含答案_第3頁(yè)
2024年滬教版高一數(shù)學(xué)下冊(cè)階段測(cè)試試卷含答案_第4頁(yè)
2024年滬教版高一數(shù)學(xué)下冊(cè)階段測(cè)試試卷含答案_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁(yè),總=sectionpages22頁(yè)第=page11頁(yè),總=sectionpages11頁(yè)2024年滬教版高一數(shù)學(xué)下冊(cè)階段測(cè)試試卷含答案考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五六總分得分評(píng)卷人得分一、選擇題(共5題,共10分)1、設(shè)則=()A.-1B.-2C.1D.22、如圖,平面四邊形ABCD中,AB=AD=CD=1,將其沿對(duì)角線BD折成四面體使平面平面若四面體頂點(diǎn)在同一球面上;則該球的體積為()

A.B.C.D.3、函數(shù)y=b+asinx(a<0)的最大值為-1,最小值為-5,則y=tan(3a+b)x的最小正周期為()A.B.C.D.4、已知關(guān)于x,y的不等式組所表示的平面區(qū)域的面積為l6,則k的值為()A.-lB.0C.1D.35、函數(shù)f(x)=sin2(x+婁脨4)+cos2(x鈭?婁脨4)鈭?1

是(

)

A.周期為婁脨

的奇函數(shù)B.周期為婁脨

的偶函數(shù)C.周期為2婁脨

的奇函數(shù)D.周期為2婁脨

的偶函數(shù)評(píng)卷人得分二、填空題(共6題,共12分)6、在正項(xiàng)等比數(shù)列{an}中,a1和a19為方程x2-10x+16=0的兩根,則a8·a12=_____7、已知△ABC的頂點(diǎn)若△ABC為鈍角三角形,則的取值范圍是____;8、【題文】已知方程所表示的圓有最大的面積,則直線的傾斜角=_________.9、若集合A={x|(k-1)x2+x-k=0}有且僅有兩個(gè)子集,則實(shí)數(shù)k的值是______.10、設(shè)a1、b1、c1、a2、b2、c2均為非零實(shí)數(shù),不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0的解集分別為集合M和N,那么“==”是“M=N”的______條件.11、在調(diào)查中學(xué)生是否抽過(guò)煙的時(shí)候,給出兩個(gè)問(wèn)題作答,無(wú)關(guān)緊要的問(wèn)題是:“你的身份證號(hào)碼的尾數(shù)是奇數(shù)嗎?”敏感的問(wèn)題是:“你抽過(guò)煙嗎?”然后要求被調(diào)查的中學(xué)生擲一枚質(zhì)地均勻的骰子一次,如果出現(xiàn)奇數(shù)點(diǎn),就回答第一個(gè)問(wèn)題,否則回答第二個(gè)問(wèn)題,由于回答哪一個(gè)問(wèn)題只有被測(cè)試者自己知道,所以應(yīng)答者一般樂(lè)意如實(shí)地回答問(wèn)題,如我們把這種方法用于300個(gè)被調(diào)查的中學(xué)生,得到80個(gè)“是”的回答,則這群人中抽過(guò)煙的百分率大約為_(kāi)_____.評(píng)卷人得分三、證明題(共5題,共10分)12、初中我們學(xué)過(guò)了正弦余弦的定義,例如sin30°=,同時(shí)也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設(shè)計(jì)一種方案,解決問(wèn)題:

已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設(shè)AB=c,AC=b;BC=a

(1)用b;c及α,β表示三角形ABC的面積S;

(2)sin(α+β)=sinαcosβ+cosαsinβ.13、如圖,已知:D、E分別為△ABC的AB、AC邊上的點(diǎn),DE∥BC,BE與CD交于點(diǎn)O,直線AO與BC邊交于M,與DE交于N,求證:BM=MC.14、初中我們學(xué)過(guò)了正弦余弦的定義,例如sin30°=,同時(shí)也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設(shè)計(jì)一種方案,解決問(wèn)題:

已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設(shè)AB=c,AC=b;BC=a

(1)用b;c及α,β表示三角形ABC的面積S;

(2)sin(α+β)=sinαcosβ+cosαsinβ.15、如圖,設(shè)△ABC是直角三角形,點(diǎn)D在斜邊BC上,BD=4DC.已知圓過(guò)點(diǎn)C且與AC相交于F,與AB相切于AB的中點(diǎn)G.求證:AD⊥BF.16、已知ABCD四點(diǎn)共圓,AB與DC相交于點(diǎn)E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點(diǎn),求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.評(píng)卷人得分四、計(jì)算題(共3題,共30分)17、方程2x2-x-4=0的兩根為α,β,則α2+αβ+β2=____.18、已知∠A為銳角且4sin2A-4sinAcosA+cos2A=0,則tanA=____.19、若f(x)=,則方程f(4x)=x的根是____.評(píng)卷人得分五、作圖題(共2題,共14分)20、如圖A、B兩個(gè)村子在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠,向A、B兩村送自來(lái)水,鋪設(shè)管道費(fèi)用為每千米2000元,請(qǐng)你在CD上選擇水廠位置O,使鋪設(shè)管道的費(fèi)用最省,并求出其費(fèi)用.21、某潛艇為躲避反潛飛機(jī)的偵查,緊急下潛50m后,又以15km/h的速度,沿北偏東45°前行5min,又以10km/h的速度,沿北偏東60°前行8min,最后擺脫了反潛飛機(jī)的偵查.試畫出潛艇整個(gè)過(guò)程的位移示意圖.評(píng)卷人得分六、綜合題(共3題,共18分)22、如圖,四邊形ABCD是菱形,點(diǎn)D的坐標(biāo)是(0,),以點(diǎn)C為頂點(diǎn)的拋物線y=ax2+bx+c恰好經(jīng)過(guò)x軸上A;B兩點(diǎn).

(1)求A;B,C三點(diǎn)的坐標(biāo);

(2)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線的解析式.23、已知拋物線y=-x2+2mx-m2-m+2.

(1)判斷拋物線的頂點(diǎn)與直線L:y=-x+2的位置關(guān)系;

(2)設(shè)該拋物線與x軸交于M;N兩點(diǎn);當(dāng)OM?ON=4,且OM≠ON時(shí),求出這條拋物線的解析式;

(3)直線L交x軸于點(diǎn)A,(2)中所求拋物線的對(duì)稱軸與x軸交于點(diǎn)B.那么在對(duì)稱軸上是否存在點(diǎn)P,使⊙P與直線L和x軸同時(shí)相切?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.24、取一張矩形的紙進(jìn)行折疊;具體操作過(guò)程如下:

第一步:先把矩形ABCD對(duì)折;折痕為MN,如圖(1)所示;

第二步:再把B點(diǎn)疊在折痕線MN上;折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為B′,得Rt△AB′E,如圖(2)所示;

第三步:沿EB′線折疊得折痕EF;如圖(3)所示;利用展開(kāi)圖(4)所示.

探究:

(1)△AEF是什么三角形?證明你的結(jié)論.

(2)對(duì)于任一矩形;按照上述方法是否都能折出這種三角形?請(qǐng)說(shuō)明理由.

(3)如圖(5);將矩形紙片ABCD沿EF折疊,使點(diǎn)A落在DC邊上的點(diǎn)A′處,x軸垂直平分DA,直線EF的表達(dá)式為y=kx-k(k<0)

①問(wèn):EF與拋物線y=有幾個(gè)公共點(diǎn)?

②當(dāng)EF與拋物線只有一個(gè)公共點(diǎn)時(shí),設(shè)A′(x,y),求的值.參考答案一、選擇題(共5題,共10分)1、D【分析】試題分析:由題意可知故選.D考點(diǎn):分段函數(shù)求值問(wèn)題.【解析】【答案】D2、A【分析】【解答】由題意平面四邊形ABCD中,AB=AD=CD=1,BD=BD⊥CD,將其沿對(duì)角線BD折成四面體A′-BCD,使平面A′BD⊥平面BCD,若四面體A′-BCD頂點(diǎn)在同一個(gè)球面上,可知A′B⊥A′C,所以BC是外接球的直徑,所以BC=球的半徑為:所以球的體積為:

故選A.3、B【分析】解:∵y=b+asinx(a<0)的最大值為-1;最小值為-5;

∴解得a=-2,b=-3.

∴y=tan(-9)x的最小正周期為

故選:B.

利用正弦函數(shù)的性質(zhì),列出關(guān)于a,b的方程,解之即可求出y=tan(3a+b)x的最小正周期.

本題考查y=tan(3a+b)x的最小正周期,考查正弦函數(shù)的性質(zhì),考查方程思想,屬于中檔題.【解析】【答案】B4、C【分析】解:畫出可行域如圖陰影部分,

顯然k一定大于零;

由得A(4;4k+4)

∵平面區(qū)域的面積為S=l6

∴S=×4×AC=2×(4k+4)=16

解得k=1

故選C

依題意;k>0,故畫出線性約束條件表示的可行域,利用三角形面積公式,數(shù)形結(jié)合即可解得k的值。

本題主要考查了線性規(guī)劃的思想方法和解題技巧,二元一次不等式組表示平面區(qū)域,數(shù)形結(jié)合的思想方法,屬基礎(chǔ)題【解析】【答案】C5、A【分析】解:f(x)=sin2(x+婁脨4)+cos2(x+婁脨4鈭?婁脨2)鈭?1=2sin2(x+婁脨4)鈭?1=鈭?cos(2x+婁脨2)

=sin2x

所以T=2婁脨2=婁脨

故選A.

先根據(jù)二倍角公式和誘導(dǎo)公式進(jìn)行化簡(jiǎn),最后結(jié)合最小正周期T=2婁脨w

和正弦函數(shù)的奇偶性可求得答案.

本題主要考查二倍角公式和誘導(dǎo)公式的應(yīng)用,考查三角函數(shù)的基本性質(zhì)--最小正周期和奇偶性.

三角函數(shù)的公式比較多,不容易記,只有在平時(shí)多積累多練習(xí)在考試中才能做到熟練應(yīng)用.【解析】A

二、填空題(共6題,共12分)6、略

【分析】試題分析:由韋達(dá)定理得由等比數(shù)列性質(zhì):若則得考點(diǎn):等比數(shù)列性質(zhì)【解析】【答案】167、略

【分析】【解析】試題分析:根據(jù)題意,由于△ABC的頂點(diǎn)若△ABC為鈍角三角形,則可知角A,,B,C分別是鈍角時(shí),則應(yīng)該滿足的條件為解得的取值范圍是故答案為考點(diǎn):解三角形【解析】【答案】8、略

【分析】【解析】

試題分析:圓的半徑當(dāng)時(shí)直線的斜率為-1,傾斜角

考點(diǎn):圓的一般方程及直線方程。

點(diǎn)評(píng):圓的圓心半徑直線斜率與傾斜角的關(guān)系【解析】【答案】9、略

【分析】解:由題意可得集合A為單元素集。

(1)當(dāng)k=1時(shí)A={x|x-1=0}={1};

(2)當(dāng)k≠1時(shí)則△=1+4k(k-1)=0解得k=

綜上所述,實(shí)數(shù)a的值是1或.

故答案是:1或.

若A恰有兩個(gè)子集,則A為單元素集,所以關(guān)于x的方程(a-1)x2-2x+1=0恰有一個(gè)實(shí)數(shù)解;分類討論能求出實(shí)數(shù)k的取值.

本題考查根據(jù)子集與真子集的概念,實(shí)數(shù)k的取值范圍的求法,解題時(shí)要認(rèn)真審題,注意分析法、討論法和等價(jià)轉(zhuǎn)化法的合理運(yùn)用.【解析】1或10、略

【分析】解:若==<0”時(shí),則不等式a1x2+b1x+c1>0等價(jià)于a2x2+b2x+c2<0;則“M≠N”;

即“==”是“M=N”的不充分條件。

但當(dāng)“M=N=?”時(shí),不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0可能是不同的不等式,則“==”不一定成立。

即“==”是“M=N”的不必要條件。

故“==”是“M=N”的既不充分又不必要條件。

故答案為:既不充分又不必要.

根據(jù)不等式的基本性質(zhì),我們可以判斷“==”?“M=N”的真假;根據(jù)不等式解集可能為空集,可判斷“M=N”?“==”的真假;進(jìn)而得到答案.

本題考查的知識(shí)點(diǎn)是充要條件,其中判斷出“==”?“M=N”與M=N”?“==”的真假,是解答本題的關(guān)鍵.【解析】既不充分又不必要11、略

【分析】解:我們把這種方法用于300個(gè)被調(diào)查的中學(xué)生,得到80個(gè)“是”的回答,則這群人中抽過(guò)煙的百分率大約為≈13.33%;

故答案為13.33%

我們把這種方法用于300個(gè)被調(diào)查的中學(xué)生,得到80個(gè)“是”的回答,則這群人中抽過(guò)煙的百分率大約為可得結(jié)論.

本題考查實(shí)際推斷原理和假設(shè)檢驗(yàn),是一個(gè)基礎(chǔ)題,但是題干比較長(zhǎng),這樣給我們讀懂題意帶來(lái)困難,不能弄懂題意是本題的難點(diǎn).【解析】13.33%三、證明題(共5題,共10分)12、略

【分析】【分析】(1)過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E;根據(jù)正弦的定義可以表示出CE的長(zhǎng)度,然后利用三角形的面積公式列式即可得解;

(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E;

則CE=AC?sin(α+β)=bsin(α+β);

∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);

即S=bcsin(α+β);

(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;

∵AD⊥BC;

∴AB?ACsin(α+β)=BD?AD+CD?AD;

∴sin(α+β)=;

=+;

=sinαcosβ+cosαsinβ.13、略

【分析】【分析】延長(zhǎng)AM,過(guò)點(diǎn)B作CD的平行線與AM的延長(zhǎng)線交于點(diǎn)F,再連接CF.根據(jù)平行線分線段成比例的性質(zhì)和逆定理可得CF∥BE,根據(jù)平行四邊形的判定和性質(zhì)即可得證.【解析】【解答】證明:延長(zhǎng)AM;過(guò)點(diǎn)B作CD的平行線與AM的延長(zhǎng)線交于點(diǎn)F,再連接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

從而四邊形OBFC為平行四邊形;

所以BM=MC.14、略

【分析】【分析】(1)過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E;根據(jù)正弦的定義可以表示出CE的長(zhǎng)度,然后利用三角形的面積公式列式即可得解;

(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E;

則CE=AC?sin(α+β)=bsin(α+β);

∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);

即S=bcsin(α+β);

(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;

∵AD⊥BC;

∴AB?ACsin(α+β)=BD?AD+CD?AD;

∴sin(α+β)=;

=+;

=sinαcosβ+cosαsinβ.15、略

【分析】【分析】作DE⊥AC于E,由切割線定理:AG2=AF?AC,可證明△BAF∽△AED,則∠ABF+∠DAB=90°,從而得出AD⊥BF.【解析】【解答】證明:作DE⊥AC于E;

則AC=AE;AB=5DE;

又∵G是AB的中點(diǎn);

∴AG=ED.

∴ED2=AF?AE;

∴5ED2=AF?AE;

∴AB?ED=AF?AE;

∴=;

∴△BAF∽△AED;

∴∠ABF=∠EAD;

而∠EAD+∠DAB=90°;

∴∠ABF+∠DAB=90°;

即AD⊥BF.16、略

【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時(shí)發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過(guò)相似三角形來(lái)實(shí)現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過(guò)等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進(jìn)一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;

由圖知:∠FDC是△ACD的一個(gè)外角;

則有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四邊形ABCD是圓的內(nèi)接四邊形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分別是∠AFB、∠AED的角平分線;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)連接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可證得∠NEX=∠MEX;

故FX、EX分別平分∠MFN與∠MEN.四、計(jì)算題(共3題,共30分)17、略

【分析】【分析】先根據(jù)根與系數(shù)的關(guān)系求出α+β、αβ的值,再根據(jù)完全平方公式對(duì)α2+αβ+β2變形后,再把α+β、αβ的值代入計(jì)算即可.【解析】【解答】解:∵方程2x2-x-4=0的兩根為α;β;

∴α+β=-=,αβ==-2;

∴α2+αβ+β2=(α+β)2-αβ=()2-(-2)=+2=.

故答案是:.18、略

【分析】【分析】先根據(jù)解一元二次方程的配方法,得出2sinA-cosA=0,再根據(jù)tanA的定義即可求出其值.【解析】【解答】解:由題意得:(2sinA-cosA)2=0;

解得:2sinA-cosA=0;2sinA=cosA;

∴tanA===0.5.

故答案為:0.5.19、略

【分析】【分析】由f(4x)=x建立方程,進(jìn)行化簡(jiǎn)配方可解得方程的根.【解析】【解答】解:∵f(4x)=x;

∴(x≠0)

化簡(jiǎn),得4x2-4x+1=(2x-1)2=0;

解得;

故答案為:.五、作圖題(共2題,共14分)20、略

【分析】【分析】作點(diǎn)A關(guān)于河CD的對(duì)稱點(diǎn)A′,當(dāng)水廠位置O在線段AA′上時(shí),鋪設(shè)管道的費(fèi)用最?。窘馕觥俊窘獯稹拷猓鹤鼽c(diǎn)A關(guān)于河CD的對(duì)稱點(diǎn)A′;連接A′B,交CD與點(diǎn)O,則點(diǎn)O即為水廠位置,此時(shí)鋪設(shè)的管道長(zhǎng)度為OA+OB.

∵點(diǎn)A與點(diǎn)A′關(guān)于CD對(duì)稱;

∴OA′=OA;A′C=AC=1;

∴OA+OB=OA′+OB=A′B.

過(guò)點(diǎn)A′作A′E⊥BE于E;則∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;

∴在Rt△A′BE中,A′B==5(千米);

∴2000×5=10000(元).

答:鋪設(shè)管道的最省費(fèi)用為10000元.21、解:由題意作示意圖如下;

【分析】【分析】由題意作示意圖。六、綜合題(共3題,共18分)22、略

【分析】【分析】(1)過(guò)C作CE⊥AB于E;根據(jù)拋物線的對(duì)稱性知AE=BE;由于四邊形ABCD是菱形,易證得Rt△OAD≌Rt△EBC,則OA=AE=BE,可設(shè)菱形的邊長(zhǎng)為2m,則AE=BE=1m,在Rt△BCE中,根據(jù)勾股定理即可求出m的值,由此可確定A;B、C三點(diǎn)的坐標(biāo);

(2)根據(jù)(1)題求得的三點(diǎn)坐標(biāo),用待定系數(shù)法即可求出拋物線的解析式.【解析】【解答】解:(1)由拋物線的對(duì)稱性可知AE=BE.

∴△AOD≌△BEC.

∴OA=EB=EA.

設(shè)菱形的邊長(zhǎng)為2m;在Rt△AOD中;

m2+()2=(2m)2;解得m=1.

∴DC=2;OA=1,OB=3.

∴A,B,C三點(diǎn)的坐標(biāo)分別為(1,0),(3,0),(2,).

(2)解法一:設(shè)拋物線的解析式為y=a(x-2)2+,代入A的坐標(biāo)(1,0),得a=-.

∴拋物線的解析式為y=-(x-2)2+.

解法二:設(shè)這個(gè)拋物線的解析式為y=ax2+bx+c,由已知拋物線經(jīng)過(guò)A(1,0),B(3,0),C(2,)三點(diǎn);

得解這個(gè)方程組,得

∴拋物線的解析式為y=-x2+4x-3.23、略

【分析】【分析】(1)根據(jù)拋物線y=-x2+2mx-m2-m+2=-(x-m)2-m+2;得出頂點(diǎn)坐標(biāo)代入一次函數(shù)解析式即可;

(2)利用已知得出x1x2=m2+m-2,|m2+m-2|=4;進(jìn)而求出m的值,再利用根的判別式得出m的取值范圍,進(jìn)而求出;

(3)分別利用點(diǎn)P1到直線L的距離P1Q1為a,以及點(diǎn)P2到直線L的距離P2Q2為b求出即可.【解析】【解答】解:(1)由拋物線y=-x2+2mx-m2-m+2=-(x-m)2-m+2;

得頂點(diǎn)坐標(biāo)為(m;-m+2),顯然滿足y=-x+2

∴拋物線的頂點(diǎn)在直線L上.

(2)設(shè)M(x1,0),N(x2,0),且x1<x2.

由OM?ON=4,OM≠ON,得|x1?x2|=4.

∵x1x2=m2+m-2,∴|m2+m-2|=4.

當(dāng)m2+m-2=4時(shí),m1=2,m2=-3

當(dāng)m2+m-2=-4時(shí);△<0,此方程無(wú)解;

∵△1=(2m)2-4(m2+m-2)=-4m+8=-4m+8>0.

∴m<2.

故取m=-3.

則拋物線的解析式為y=-x2-6x-4.

(3)拋物線y=-x2-6x-4

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論