版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年滬教新版高二數(shù)學(xué)上冊月考試卷含答案考試試卷考試范圍:全部知識點;考試時間:120分鐘學(xué)校:______姓名:______班級:______考號:______總分欄題號一二三四五六總分得分評卷人得分一、選擇題(共6題,共12分)1、直線ax+3y-9=0與直線x-3y+b=0關(guān)于原點對稱,則a,b的值是()
A.a=1,b=9
B.a=-1,b=9
C.a=1,b=-9
D.a=-1,b=-9
2、【題文】在中,點在邊中線上,若則·()的()A.最大值為8B.最大值為4C.最小值-4D.最小值為-83、【題文】已知是單位圓上的動點,且單位圓的圓心是則()A.B.C.D.4、設(shè)集合則等于()A.B.C.D.5、設(shè)a,b是兩條不同的直線,α,β是兩個不同的平面,則能得出a⊥b的是()A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a?α,b⊥β,α∥βD.a?α,b∥β,α⊥β6、已知F是雙曲線C:y2-mx2=3m(m>0)的一個焦點,則點F到C的一條漸近線的距離為()A.B.C.D.評卷人得分二、填空題(共9題,共18分)7、我校高中生共有2700人,其中高一年級900人,高二年級1200人,高三年級600人,現(xiàn)采取分層抽樣法抽取容量為135的樣本,那么高一、高二、高三各年級抽取的人數(shù)分別為__________________8、平面直角坐標(biāo)系xOy中,不同于原點O的動點P(x,y)滿足|OP|2=|x|+|y|,則直線OP的斜率k的取值范圍是____.9、設(shè)γ,θ為常數(shù)(),若sin(α+γ)+sin(γ-β)=sinθ(sinα-sinβ)+cosθ(cosα+cosβ)對一切α,β∈R恒成立,則=____.10、設(shè)函數(shù)的導(dǎo)數(shù)為且則的值是.11、焦點在x軸上的橢圓的離心率為則它的長半軸長為_______12、若為的各位數(shù)字之和,如則記則=13、曲線在點(1,0)處的切線方程為**14、【題文】已知6sinb=5sin(2a+b)則15、【題文】某企業(yè)三月中旬生產(chǎn);A;B、C三種產(chǎn)品共3000件,根據(jù)分層抽樣的結(jié)果;企。
業(yè)統(tǒng)計員制作了如下的統(tǒng)計表格:
由于不小心,表格中A、C產(chǎn)品的有關(guān)數(shù)據(jù)已被污染看不清楚,統(tǒng)計員記得A產(chǎn)品的樣本容量比C產(chǎn)品的樣本容量多10,根據(jù)以上信息,可得C的產(chǎn)品數(shù)量是____件。評卷人得分三、作圖題(共7題,共14分)16、著名的“將軍飲馬”問題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?
17、A是銳角MON內(nèi)部任意一點,在∠MON的兩邊OM,ON上各取一點B,C,組成三角形,使三角形周長最小.(如圖所示)18、已知,A,B在直線l的兩側(cè),在l上求一點,使得PA+PB最?。ㄈ鐖D所示)19、著名的“將軍飲馬”問題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?
20、A是銳角MON內(nèi)部任意一點,在∠MON的兩邊OM,ON上各取一點B,C,組成三角形,使三角形周長最?。ㄈ鐖D所示)21、已知,A,B在直線l的兩側(cè),在l上求一點,使得PA+PB最小.(如圖所示)22、分別畫一個三棱錐和一個四棱臺.評卷人得分四、解答題(共1題,共7分)23、甲、乙、丙三名音樂愛好者參加某電視臺舉辦的演唱技能海選活動,在本次海選中有合格和不合格兩個等級.若海選合格記分,海選不合格記分.假設(shè)甲、乙、丙海選合格的概率分別為他們海選合格與不合格是相互獨立的.(1)求在這次海選中,這三名音樂愛好者至少有一名海選合格的概率;(2)記在這次海選中,甲、乙、丙三名音樂愛好者所得分之和為隨機變量求隨機變量的分布列和數(shù)學(xué)期望.評卷人得分五、計算題(共3題,共6分)24、已知a為實數(shù),求導(dǎo)數(shù)25、求證:ac+bd≤?.26、在(1+x)6(1+y)4的展開式中,記xmyn項的系數(shù)為f(m,n),求f(3,0)+f(2,1)+f(1,2)+f(0,3)的值.評卷人得分六、綜合題(共3題,共18分)27、(2009?新洲區(qū)校級模擬)如圖,已知直角坐標(biāo)系內(nèi)有一條直線和一條曲線,這條直線和x軸、y軸分別交于點A和點B,且OA=OB=1.這條曲線是函數(shù)y=的圖象在第一象限的一個分支,點P是這條曲線上任意一點,它的坐標(biāo)是(a、b),由點P向x軸、y軸所作的垂線PM、PN,垂足是M、N,直線AB分別交PM、PN于點E、F.則AF?BE=____.28、(2009?新洲區(qū)校級模擬)如圖,已知直角坐標(biāo)系內(nèi)有一條直線和一條曲線,這條直線和x軸、y軸分別交于點A和點B,且OA=OB=1.這條曲線是函數(shù)y=的圖象在第一象限的一個分支,點P是這條曲線上任意一點,它的坐標(biāo)是(a、b),由點P向x軸、y軸所作的垂線PM、PN,垂足是M、N,直線AB分別交PM、PN于點E、F.則AF?BE=____.29、已知f(x)=logax(a>0,a≠1),設(shè)數(shù)列f(a1),f(a2),f(a3),,f(an)是首項為4,公差為2的等差數(shù)列.參考答案一、選擇題(共6題,共12分)1、D【分析】
直線ax+3y-9=0上任意取點(m,n),關(guān)于原點對稱點的坐標(biāo)為(-m,-n),則
∵點(m;n)是直線ax+3y-9=0上任意一點。
∴a=-1,b=-9
故選D.
【解析】【答案】直線ax+3y-9=0上任意取點(m;n),關(guān)于原點對稱點的坐標(biāo)為(-m,-n),分別代入已知的直線方程,即可求得結(jié)論.
2、A【分析】【解析】·()=·2=2·當(dāng)且僅當(dāng)即點為的中點時,等號成立,故·()
的最大值為8,選A項。【解析】【答案】A3、C【分析】【解析】
試題分析故選擇C,其實半徑不一定要為
考點:向量的數(shù)量積及整體思想.【解析】【答案】C4、C【分析】【分析】因為,所以,=故選C。5、C【分析】【解答】解:A.若α⊥β,a⊥α,a?β,b?β,b⊥α,則a∥b;故A錯;
B.若a⊥α,α∥β,則a⊥β,又b⊥β,則a∥b;故B錯;
C.若b⊥β,α∥β,則b⊥α,又a?α,則a⊥b;故C正確;
D.若α⊥β,b∥β,設(shè)α∩β=c,由線面平行的性質(zhì)得,b∥c,若a∥c,則a∥b;故D錯.
故選C.
【分析】可通過線面垂直的性質(zhì)定理,判斷A;通過面面平行的性質(zhì)和線面垂直的性質(zhì),判斷B;通過面面平行的性質(zhì)和線面垂直的定義,即可判斷C;由線面平行的性質(zhì)和面面垂直的性質(zhì),即可判斷D.6、A【分析】解:雙曲線C:y2-mx2=3m(m>0)
即為-=1;
可得a2=3m,b2=3,c2=a2+b2=3m+3;
設(shè)F(0,),一條漸近線方程為y=x;
則點F到C的一條漸近線的距離為=.
故選:A.
化雙曲線方程為標(biāo)準方程;求得焦點F的坐標(biāo)和一條漸近線方程,由點到直線的距離公式,計算即可得到所求值.
本題考查雙曲線的方程和性質(zhì),主要是漸近線方程的運用,點到直線的距離公式的運用,考查運算能力,屬于基礎(chǔ)題.【解析】【答案】A二、填空題(共9題,共18分)7、略
【分析】試題分析:由于總體是由明顯差異的三個年級構(gòu)成,所以按照分層抽樣的內(nèi)容,根據(jù)題意得,在各層中的抽樣比為則在高一年級抽取的人數(shù)是人,高二年級抽取的人數(shù)是人,高三年級抽取的人數(shù)是人,那么高一、高二、高三各年級抽取的人數(shù)分別為45,60,30.故答案為:45,60,30.考點:分層抽樣方法.【解析】【答案】45,60,308、略
【分析】
因為面直角坐標(biāo)系xOy中,不同于O的動點P(x,y)滿足|OP|2=|x|+|y|;
所以P的軌跡方程為:x2+y2=|x|+|y|;
即(|x|)2+(|y|-)2=.
滿足點P的圖形為:
所以直線OP的斜率k的取值范圍是R.
故答案為:R.
【解析】【答案】通過動點P(x,y)滿足|OP|2=|x|+|y|;求出p的軌跡方程,然后求解直線OP的斜率k的取值范圍.
9、略
【分析】
令α=0,β=可得sinγ-cosγ=-sinθ+cosθ①;
令α=β=0可得cosγ+sinγ=sinθ+cosθ②;
由①②可得sinγ=cosθ,cosγ=sinθ,∴tanγ=cotθ,θ+γ=
∴===2;故答案為2.
【解析】【答案】令α,β分別取0和再令α,β分別取和0,化簡可得tanγ=cotθ,θ+γ=代入要求的式子,化簡可得=從而求得結(jié)果.
10、略
【分析】試題分析:對求導(dǎo)則則考點:本題主要考查求導(dǎo).【解析】【答案】11、略
【分析】【解析】試題分析:因為橢圓的焦點在x軸上,所以所以它的長半軸長為1.考點:本題考查橢圓的基本性質(zhì)?!窘馕觥俊敬鸢浮?.12、略
【分析】f1(8)=11,f2(8)=f(11)=5,f3(8)=f(5)=8,f4(8)=f(8)=112012=3*670+2==>f2012(8)=5.【解析】【答案】513、略
【分析】求導(dǎo)得切線斜率k=0,切線方程為【解析】【答案】14、略
【分析】【解析】由6sinb=5sin(2a+b),得即。
所以【解析】【答案】1115、略
【分析】【解析】略【解析】【答案】800三、作圖題(共7題,共14分)16、略
【分析】【分析】根據(jù)軸對稱的性質(zhì)作出B點與河面的對稱點B′,連接AB′,AB′與河面的交點C即為所求.【解析】【解答】解:作B點與河面的對稱點B′;連接AB′,可得到馬喝水的地方C;
如圖所示;
由對稱的性質(zhì)可知AB′=AC+BC;
根據(jù)兩點之間線段最短的性質(zhì)可知;C點即為所求.
17、略
【分析】【分析】作出A關(guān)于OM的對稱點A',關(guān)于ON的A對稱點A'',連接A'A'',根據(jù)兩點之間線段最短即可判斷出使三角形周長最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對稱點A';關(guān)于ON的A對稱點A'',與OM;ON相交于B、C,連接ABC即為所求三角形.
證明:∵A與A'關(guān)于OM對稱;A與A″關(guān)于ON對稱;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根據(jù)兩點之間線段最短,A'A''為△ABC的最小值.18、略
【分析】【分析】顯然根據(jù)兩點之間,線段最短,連接兩點與直線的交點即為所求作的點.【解析】【解答】解:連接兩點與直線的交點即為所求作的點P;
這樣PA+PB最??;
理由是兩點之間,線段最短.19、略
【分析】【分析】根據(jù)軸對稱的性質(zhì)作出B點與河面的對稱點B′,連接AB′,AB′與河面的交點C即為所求.【解析】【解答】解:作B點與河面的對稱點B′;連接AB′,可得到馬喝水的地方C;
如圖所示;
由對稱的性質(zhì)可知AB′=AC+BC;
根據(jù)兩點之間線段最短的性質(zhì)可知;C點即為所求.
20、略
【分析】【分析】作出A關(guān)于OM的對稱點A',關(guān)于ON的A對稱點A'',連接A'A'',根據(jù)兩點之間線段最短即可判斷出使三角形周長最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對稱點A';關(guān)于ON的A對稱點A'',與OM;ON相交于B、C,連接ABC即為所求三角形.
證明:∵A與A'關(guān)于OM對稱;A與A″關(guān)于ON對稱;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根據(jù)兩點之間線段最短,A'A''為△ABC的最小值.21、略
【分析】【分析】顯然根據(jù)兩點之間,線段最短,連接兩點與直線的交點即為所求作的點.【解析】【解答】解:連接兩點與直線的交點即為所求作的點P;
這樣PA+PB最?。?/p>
理由是兩點之間,線段最短.22、解:畫三棱錐可分三步完成。
第一步:畫底面﹣﹣畫一個三角形;
第二步:確定頂點﹣﹣在底面外任一點;
第三步:畫側(cè)棱﹣﹣連接頂點與底面三角形各頂點.
畫四棱可分三步完成。
第一步:畫一個四棱錐;
第二步:在四棱錐一條側(cè)棱上取一點;從這點開始,順次在各個面內(nèi)畫與底面對應(yīng)線段平行的線段;
第三步:將多余線段擦去.
【分析】【分析】畫三棱錐和畫四棱臺都是需要先畫底面,再確定平面外一點連接這點與底面上的頂點,得到錐體,在畫四棱臺時,在四棱錐一條側(cè)棱上取一點,從這點開始,順次在各個面內(nèi)畫與底面對應(yīng)線段平行的線段,將多余線段擦去,得到圖形.四、解答題(共1題,共7分)23、略
【分析】試題分析:概率與統(tǒng)計類解答題是高考常考的題型,以排列組合和概率統(tǒng)計等知識為工具,主要考查對概率事件的判斷及其概率的計算,隨機變量概率分布列的性質(zhì)及其應(yīng)用:對于(1),從所求事件的對立事件的概率入手即對于(2),根據(jù)的所有可能取值:0,1,2,3;分別求出相應(yīng)事件的概率P,列出分布列,運用數(shù)學(xué)期望計算公式求解即可.(1)記“甲海選合格”為事件A,“乙海選合格”為事件B,“丙海選合格”為事件C,“甲、乙、丙至少有一名海選合格”為事件E..(2)的所有可能取值為0,1,2,3..所以的分布列為。0123.考點:離散型隨機變量的概率、分布列和數(shù)學(xué)期望.【解析】【答案】(1)(2)五、計算題(共3題,共6分)24、解:【分析】【分析】由原式得∴25、證明:∵(a2+b2)?(c2+d2)﹣(ac+bd)2=(ad﹣bc)2≥0,∴(a2+b2)?(c2+d2)≥(ac+bd)2;
∴|ac+bd|≤?
∴ac+bd≤?【分析】【分析】作差(a2+b2)?(c2+d2)﹣(ac+bd)2=(ad﹣bc)2≥0,即可證明.26、解:(1+x)6(1+y)4的展開式中,含x3y0的系數(shù)是:C63C40=20.f(3,0)=20;含x2y1的系數(shù)是C62C41=60;f(2,1)=60;
含x1y2的系數(shù)是C61C42=36;f(1,2)=36;
含x0y3的系數(shù)是C60C43=4;f(0,3)=4;
∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120【分析】【分析】由題意依次求出x3y0,x2y1,x1y2,x0y3,項的系數(shù),求和即可.六、綜合題(共3題,共18分)27、略
【分析】【分析】根據(jù)OA=OB,得到△AOB是等腰直角三角形,則△NBF也是等腰直角三角形,由于P的縱坐標(biāo)是b,因而F點的縱坐標(biāo)是b,即FM=b,則得到AF=b,同理BE=a,根據(jù)(a,b)是函數(shù)y=的圖象上的點,因而b=,ab=,則即可求出AF?BE.【解析】【解答】解:∵P的坐標(biāo)為(a,);且PN⊥OB,PM⊥OA;
∴N的坐標(biāo)為(0,);M點的坐標(biāo)為(a,0);
∴BN=1-;
在直角三角形BNF中;∠NBF=45°(OB=OA=1,三角形OAB是等腰直角三角形);
∴NF=BN=1-;
∴F點的坐標(biāo)為(1-,);
∵OM=a;
∴AM=1-a;
∴EM=AM=1-a;
∴E點的坐標(biāo)為(a;1-a);
∴AF2=(-)2+()2=,BE2=(a)2+(-a)2=2a2;
∴AF?BE=1.
故答案為:1.28、略
【分析】【分析】根據(jù)OA=OB,得到△AOB是等腰直角三角形,則△NBF也是等腰直角三角形,由于P的縱坐標(biāo)是b,因而F點的縱坐標(biāo)是b,即FM=b,則得到AF=b,同理BE=a,根據(jù)(a,b)是函數(shù)y=的圖象上的點,因而b=,ab=,則即可求出AF?BE.【解析】【解答】解:∵P的坐標(biāo)為(a,);且PN⊥OB,PM⊥OA;
∴N的坐標(biāo)為(0,);M點的坐標(biāo)為(a,0);
∴BN=1-;
在直角三角形BNF中;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年北師大版高三歷史上冊階段測試試卷含答案
- 2025年滬教新版選修3物理上冊階段測試試卷含答案
- 2025年北師大版九年級地理下冊月考試卷含答案
- 2025年湘教版選擇性必修1歷史下冊月考試卷含答案
- 公共文化服務(wù)理論與實務(wù)知到智慧樹章節(jié)測試課后答案2024年秋四川藝術(shù)職業(yè)學(xué)院
- 2025年度美容院美容產(chǎn)品包裝設(shè)計與生產(chǎn)合同4篇
- 二零二五年度農(nóng)業(yè)休閑觀光園開發(fā)合同4篇
- 二零二五年度綠色生態(tài)農(nóng)用地流轉(zhuǎn)合同4篇
- 二零二五年度出租車座套廣告媒體監(jiān)測與效果評估合同4篇
- 2025版智能倉儲物流系統(tǒng)建設(shè)合同范本2篇
- 2024年蘇州工業(yè)園區(qū)服務(wù)外包職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試歷年參考題庫含答案解析
- 人教版初中語文2022-2024年三年中考真題匯編-學(xué)生版-專題08 古詩詞名篇名句默寫
- 醫(yī)療行業(yè)軟件系統(tǒng)應(yīng)急預(yù)案
- 使用錯誤評估報告(可用性工程)模版
- 《精密板料矯平機 第2部分:技術(shù)規(guī)范》
- 2024年高考全國甲卷英語試卷(含答案)
- 2024光伏發(fā)電工程交流匯流箱技術(shù)規(guī)范
- 旅游活動碳排放管理評價指標(biāo)體系構(gòu)建及實證研究
- 2022年全國職業(yè)院校技能大賽-電氣安裝與維修賽項規(guī)程
- 小學(xué)德育養(yǎng)成教育工作分層實施方案
- 黑枸杞生物原液應(yīng)用及產(chǎn)業(yè)化項目可行性研究報告
評論
0/150
提交評論