2025年浙教版高一數(shù)學(xué)下冊(cè)月考試卷含答案_第1頁(yè)
2025年浙教版高一數(shù)學(xué)下冊(cè)月考試卷含答案_第2頁(yè)
2025年浙教版高一數(shù)學(xué)下冊(cè)月考試卷含答案_第3頁(yè)
2025年浙教版高一數(shù)學(xué)下冊(cè)月考試卷含答案_第4頁(yè)
2025年浙教版高一數(shù)學(xué)下冊(cè)月考試卷含答案_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線(xiàn)…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線(xiàn)※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線(xiàn)…………○…………第=page22頁(yè),總=sectionpages22頁(yè)第=page11頁(yè),總=sectionpages11頁(yè)2025年浙教版高一數(shù)學(xué)下冊(cè)月考試卷含答案考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五總分得分評(píng)卷人得分一、選擇題(共5題,共10分)1、當(dāng)a>0時(shí),直線(xiàn):x-a2y-a=0與圓:的位置關(guān)系是()

A.相交。

B.相切。

C.相離。

D.相切或相離。

2、已知點(diǎn)P()在第三象限,則角的終邊落在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限3、如果則當(dāng)x≠0且x≠1時(shí),f(x)=()A.B.

C.D.

4、函數(shù)對(duì)任意的恒有且則()A.-2B.0C.1D.25、在三棱錐的六條棱中任意選擇兩條,則這兩條棱是一對(duì)異面直線(xiàn)的概率為(

)

A.120

B.115

C.15

D.16

評(píng)卷人得分二、填空題(共5題,共10分)6、【題文】一個(gè)三棱錐的正視圖和側(cè)視圖及其尺寸如圖所示,則該三棱錐的俯視圖的面積為_(kāi)___.

7、【題文】若冪函數(shù)的圖像經(jīng)過(guò)點(diǎn)則它在A點(diǎn)處的切線(xiàn)的斜率為_(kāi)___.8、【題文】已知等于()。A.B.C.D.9、已知全集A={70,1946,1997,2003},B={1,10,70,2016},則A∩B=____.10、命題“若x2-3x+2>0,則x≠1且x≠2”的逆否命題是____________.評(píng)卷人得分三、證明題(共9題,共18分)11、已知D是銳角△ABC外接圓劣弧的中點(diǎn);弦AD與邊BC相交于點(diǎn)E,而且AB:AC=2:1,AB:EC=3:1.求:

(1)EC:CB的值;

(2)cosC的值;

(3)tan的值.12、如圖;過(guò)圓O外一點(diǎn)D作圓O的割線(xiàn)DBA,DE與圓O切于點(diǎn)E,交AO的延長(zhǎng)線(xiàn)于F,AF交圓O于C,且AD⊥DE.

(1)求證:E為的中點(diǎn);

(2)若CF=3,DE?EF=,求EF的長(zhǎng).13、如圖,設(shè)△ABC是直角三角形,點(diǎn)D在斜邊BC上,BD=4DC.已知圓過(guò)點(diǎn)C且與AC相交于F,與AB相切于AB的中點(diǎn)G.求證:AD⊥BF.14、已知ABCD四點(diǎn)共圓,AB與DC相交于點(diǎn)E,AD與BC交于F,∠E的平分線(xiàn)EX與∠F的平分線(xiàn)FX交于X,M、N分別是AC與BD的中點(diǎn),求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.15、如圖;已知AB是⊙O的直徑,P是AB延長(zhǎng)線(xiàn)上一點(diǎn),PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:

(1)AD=AE

(2)PC?CE=PA?BE.16、求證:(1)周長(zhǎng)為21的平行四邊形能夠被半徑為的圓面所覆蓋.

(2)桌面上放有一絲線(xiàn)做成的線(xiàn)圈,它的周長(zhǎng)是2l,不管線(xiàn)圈形狀如何,都可以被個(gè)半徑為的圓紙片所覆蓋.17、AB是圓O的直徑,CD是圓O的一條弦,AB與CD相交于E,∠AEC=45°,圓O的半徑為1,求證:EC2+ED2=2.18、如圖,已知:D、E分別為△ABC的AB、AC邊上的點(diǎn),DE∥BC,BE與CD交于點(diǎn)O,直線(xiàn)AO與BC邊交于M,與DE交于N,求證:BM=MC.19、已知ABCD四點(diǎn)共圓,AB與DC相交于點(diǎn)E,AD與BC交于F,∠E的平分線(xiàn)EX與∠F的平分線(xiàn)FX交于X,M、N分別是AC與BD的中點(diǎn),求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.評(píng)卷人得分四、解答題(共1題,共3分)20、已知數(shù)列{an}滿(mǎn)足且.

(Ⅰ)求證:數(shù)列是等差數(shù)列,并求通項(xiàng)an;

(Ⅱ)求Tn=c1+c2++cn的值.

評(píng)卷人得分五、作圖題(共2題,共6分)21、如圖A、B兩個(gè)村子在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠(chǎng),向A、B兩村送自來(lái)水,鋪設(shè)管道費(fèi)用為每千米2000元,請(qǐng)你在CD上選擇水廠(chǎng)位置O,使鋪設(shè)管道的費(fèi)用最省,并求出其費(fèi)用.22、某潛艇為躲避反潛飛機(jī)的偵查,緊急下潛50m后,又以15km/h的速度,沿北偏東45°前行5min,又以10km/h的速度,沿北偏東60°前行8min,最后擺脫了反潛飛機(jī)的偵查.試畫(huà)出潛艇整個(gè)過(guò)程的位移示意圖.參考答案一、選擇題(共5題,共10分)1、A【分析】

由圓的方程得到圓心坐標(biāo)為(a,);

則圓心到直線(xiàn):x-a2y-a=0的距離d==≤=<1(當(dāng)且僅當(dāng)a=1時(shí)取等號(hào));

所以直線(xiàn)與圓的位置關(guān)系是相交.

故選A.

【解析】【答案】由圓的方程找出圓心坐標(biāo)和圓的半徑;然后利用點(diǎn)到直線(xiàn)的距離公式表示出圓心到已知直線(xiàn)的距離d,利用基本不等式求出d的最大值,判斷d的最大值與半徑的大小即可得到直線(xiàn)與圓的位置關(guān)系.

2、B【分析】P()在第三象限,故當(dāng)角在第二象限符合,正切,余弦均負(fù)。【解析】【答案】B3、B【分析】解答:令則x=∵

∴f(t)=

化簡(jiǎn)得:f(t)=

即f(x)=

故選B

分析:令則x=代入到即得到f(t)=化簡(jiǎn)得:f(t)=在將t換成x即可.4、A【分析】【分析】因?yàn)閷?duì)任意的恒有所以所以的周期為4.所以又有且令x=1,得=-2,所以-2.選A。

【點(diǎn)評(píng)】若函數(shù)對(duì)于定義域中的任意x滿(mǎn)足:則的周期為5、C【分析】解:在三棱錐的六條棱中任意選擇兩條;所有的選法共有C62=15

種;

其中;這兩條棱是一對(duì)異面直線(xiàn)的選法有3

種,即三棱錐的3

對(duì)對(duì)棱;

故所求事件的概率等于315=15

故選C.

所有的選法共有C62=15

種;這兩條棱是一對(duì)異面直線(xiàn)的選法有3

種,即三棱錐的3

對(duì)對(duì)棱,由古典概型公式可得所求事件的概率.

本題考查等可能事件的概率的求法,判斷這兩條棱是一對(duì)異面直線(xiàn)的有3

種,即三棱錐的3

對(duì)對(duì)棱,是解題的關(guān)鍵.【解析】C

二、填空題(共5題,共10分)6、略

【分析】【解析】

試題分析:根據(jù)“高平齊,長(zhǎng)對(duì)正,寬相等”,該三棱錐底面是一直角三角形,直角邊長(zhǎng)分別為2,1,所以,其面積為答案為1.

考點(diǎn):三視圖,面積計(jì)算。【解析】【答案】17、略

【分析】【解析】

試題分析:令冪函數(shù)解析式為將代入得所以a=冪函數(shù)為其導(dǎo)數(shù)為故切線(xiàn)斜率為

考點(diǎn):本題主要考查冪函數(shù)解析式;待定系數(shù)法,導(dǎo)數(shù)的幾何意義。

點(diǎn)評(píng):簡(jiǎn)單題,解的思路比較明確,首先利用待定系數(shù)法求冪函數(shù)解析式,再利用導(dǎo)數(shù)求切線(xiàn)斜率。【解析】【答案】8、略

【分析】【解析】

試題分析:根據(jù)已知條件可知且有x>0,y>0;那么對(duì)于。

兩式相除可知,

故選B.

考點(diǎn):本試題考查了對(duì)數(shù)式的運(yùn)算。

點(diǎn)評(píng):解決該試題的關(guān)鍵是對(duì)于指數(shù)式與對(duì)數(shù)式的互化,將已知的x,和y,運(yùn)用指數(shù)式表示出來(lái)然后借助于x,y的關(guān)系式得到所求,屬于基礎(chǔ)題。【解析】【答案】B9、{70}【分析】【解答】解:∵A={70;1946,1997,2003},B={1,10,70,2016},∴A∩B={70}.

故答案為:{70}

【分析】由A與B,求出兩集合的交集即可.10、略

【分析】解:∵x2-3x+2>0的否定是x2-3x+2≤0;

“x≠1且x≠2”的否定為“x=1或x=2”;

∴命題“若x2-3x+2>0,則x≠1且x≠2”逆否命題是:若x=1或x=2,則x2-3x+2≤0;

故答案為:若x=1或x=2,則x2-3x+2≤0.【解析】若x=1或x=2,則x2-3x+2≤0三、證明題(共9題,共18分)11、略

【分析】【分析】(1)求出∠BAD=∠CAD,根據(jù)角平分線(xiàn)性質(zhì)推出=;代入求出即可;

(2)作BF⊥AC于F;求出AB=BC,根據(jù)等腰三角形性質(zhì)求出AF=CF,根據(jù)三角函數(shù)的定義求出即可;

(3)BF過(guò)圓心O,作OM⊥BC于M,求出BF,根據(jù)銳角三角函數(shù)的定義求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;

∴∠BAD=∠CAD;

∴;

∴.

答:EC:CB的值是.

(2)作BF⊥AC于F;

∵=,=;

∴BA=BC;

∴F為AC中點(diǎn);

∴cosC==.

答:cosC的值是.

(3)BF過(guò)圓心O;作OM⊥BC于M;

由勾股定理得:BF==CF;

∴tan.

答:tan的值是.12、略

【分析】【分析】要證E為中點(diǎn),可證∠EAD=∠OEA,利用輔助線(xiàn)OE可以證明,求EF的長(zhǎng)需要借助相似,得出比例式,之間的關(guān)系可以求出.【解析】【解答】(1)證明:連接OE

OA=OE=>∠OAE=∠OEA

DE切圓O于E=>OE⊥DE

AD⊥DE=>∠EAD+∠AED=90°

=>∠EAD=∠OEA

?OE∥AD

=>E為的中點(diǎn).

(2)解:連CE;則∠AEC=90°,設(shè)圓O的半徑為x

∠ACE=∠AED=>Rt△ADE∽R(shí)t△AEC=>

DE切圓O于E=>△FCE∽△FEA

∴,

即DE?EF=AD?CF

DE?EF=;CF=3

∴AD=

OE∥AD=>=>=>8x2+7x-15=0

∴x1=1,x2=-(舍去)

∴EF2=FC?FA=3x(3+2)=15

∴EF=13、略

【分析】【分析】作DE⊥AC于E,由切割線(xiàn)定理:AG2=AF?AC,可證明△BAF∽△AED,則∠ABF+∠DAB=90°,從而得出AD⊥BF.【解析】【解答】證明:作DE⊥AC于E;

則AC=AE;AB=5DE;

又∵G是AB的中點(diǎn);

∴AG=ED.

∴ED2=AF?AE;

∴5ED2=AF?AE;

∴AB?ED=AF?AE;

∴=;

∴△BAF∽△AED;

∴∠ABF=∠EAD;

而∠EAD+∠DAB=90°;

∴∠ABF+∠DAB=90°;

即AD⊥BF.14、略

【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線(xiàn),等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時(shí)發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過(guò)相似三角形來(lái)實(shí)現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過(guò)等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進(jìn)一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線(xiàn).【解析】【解答】證明:(1)連接AX;

由圖知:∠FDC是△ACD的一個(gè)外角;

則有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四邊形ABCD是圓的內(nèi)接四邊形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分別是∠AFB、∠AED的角平分線(xiàn);

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)連接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可證得∠NEX=∠MEX;

故FX、EX分別平分∠MFN與∠MEN.15、略

【分析】【分析】(1)連AC;BC;OC,如圖,根據(jù)切線(xiàn)的性質(zhì)得到OC⊥PD,而AD⊥PC,則OC∥PD,得∠ACO=∠CAD,則∠DAC=∠CAO,根據(jù)三角形相似的判定易證得Rt△ACE≌Rt△ACD;

即可得到結(jié)論;

(2)根據(jù)三角形相似的判定易證Rt△PCE∽R(shí)t△PAD,Rt△EBC∽R(shí)t△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到結(jié)論.【解析】【解答】證明:(1)連AC、BC,OC,如圖,

∵PC是⊙O的切線(xiàn);

∴OC⊥PD;

而AD⊥PC;

∴OC∥PD;

∴∠ACO=∠CAD;

而∠ACO=∠OAC;

∴∠DAC=∠CAO;

又∵CE⊥AB;

∴∠AEC=90°;

∴Rt△ACE≌Rt△ACD;

∴CD=CE;AD=AE;

(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;

∴Rt△PCE∽R(shí)t△PAD;

∴PC:PA=CE:AD;

又∵AB為⊙O的直徑;

∴∠ACB=90°;

而∠DAC=∠CAO;

∴Rt△EBC∽R(shí)t△DCA;

∴BE:CE=CD:AD;

而CD=CE;

∴BE:CE=CE:AD;

∴BE:CE=PC:PA;

∴PC?CE=PA?BE.16、略

【分析】【分析】(1)關(guān)鍵在于圓心位置;考慮到平行四邊形是中心對(duì)稱(chēng)圖形,可讓覆蓋圓圓心與平行四邊形對(duì)角線(xiàn)交點(diǎn)疊合.

(2)“曲“化“直“.對(duì)比(1),應(yīng)取均分線(xiàn)圈的二點(diǎn)連線(xiàn)段中點(diǎn)作為覆蓋圓圓心.【解析】【解答】

證明:(1)如圖1;設(shè)ABCD的周長(zhǎng)為2l,BD≤AC,AC;BD交于O,P為周界上任意一點(diǎn),不妨設(shè)在AB上;

則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.

因此周長(zhǎng)為2l的平行四邊形ABCD可被以O(shè)為圓心;半徑為的圓所覆蓋;命題得證.

(2)如圖2,在線(xiàn)圈上分別取點(diǎn)R,Q,使R、Q將線(xiàn)圈分成等長(zhǎng)兩段,每段各長(zhǎng)l.又設(shè)RQ中點(diǎn)為G,M為線(xiàn)圈上任意一點(diǎn),連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=

因此,以G為圓心,長(zhǎng)為半徑的圓紙片可以覆蓋住整個(gè)線(xiàn)圈.17、略

【分析】【分析】首先作CD關(guān)于AB的對(duì)稱(chēng)直線(xiàn)FG,由∠AEC=45°,即可證得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易證得O,C,G,E四點(diǎn)共圓,則可求得CG2=OC2+OG2=2.繼而證得EC2+ED2=2.【解析】【解答】證明:作CD關(guān)于AB的對(duì)稱(chēng)直線(xiàn)FG;

∵∠AEC=45°;

∴∠AEF=45°;

∴CD⊥FG;

∴CG2=CE2+EG2;

即CG2=CE2+ED2;

∵△OCD≌△OGF(SSS);

∴∠OCD=∠OGF.

∴O;C,G,E四點(diǎn)共圓.

∴∠COG=∠CEG=90°.

∴CG2=OC2+OG2=2.

∴EC2+ED2=2.18、略

【分析】【分析】延長(zhǎng)AM,過(guò)點(diǎn)B作CD的平行線(xiàn)與AM的延長(zhǎng)線(xiàn)交于點(diǎn)F,再連接CF.根據(jù)平行線(xiàn)分線(xiàn)段成比例的性質(zhì)和逆定理可得CF∥BE,根據(jù)平行四邊形的判定和性質(zhì)即可得證.【解析】【解答】證明:延長(zhǎng)AM;過(guò)點(diǎn)B作CD的平行線(xiàn)與AM的延長(zhǎng)線(xiàn)交于點(diǎn)F,再連接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

從而四邊形OBFC為平行四邊形;

所以BM=MC.19、略

【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線(xiàn),等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時(shí)發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過(guò)相似三角形來(lái)實(shí)現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過(guò)等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進(jìn)一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線(xiàn).【解析】【解答】證明:(1)連接AX;

由圖知:∠FDC是△ACD的一個(gè)外角;

則有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四邊形ABCD是圓的內(nèi)接四邊形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分別是∠AFB、∠AED的角平分線(xiàn);

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FA

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論