湖州職業(yè)技術(shù)學院《大數(shù)據(jù)挖掘及應(yīng)用》2023-2024學年第二學期期末試卷_第1頁
湖州職業(yè)技術(shù)學院《大數(shù)據(jù)挖掘及應(yīng)用》2023-2024學年第二學期期末試卷_第2頁
湖州職業(yè)技術(shù)學院《大數(shù)據(jù)挖掘及應(yīng)用》2023-2024學年第二學期期末試卷_第3頁
湖州職業(yè)技術(shù)學院《大數(shù)據(jù)挖掘及應(yīng)用》2023-2024學年第二學期期末試卷_第4頁
湖州職業(yè)技術(shù)學院《大數(shù)據(jù)挖掘及應(yīng)用》2023-2024學年第二學期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁湖州職業(yè)技術(shù)學院

《大數(shù)據(jù)挖掘及應(yīng)用》2023-2024學年第二學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在處理時間序列數(shù)據(jù)時,如果需要預(yù)測未來多個時間點的值,以下哪種模型較為適用?()A.AR模型B.MA模型C.ARMA模型D.ARIMA模型2、在數(shù)據(jù)庫管理中,若要確保數(shù)據(jù)的一致性和完整性,通常會使用哪種約束?()A.主鍵約束B.外鍵約束C.唯一約束D.以上都是3、在數(shù)據(jù)分析中,若要對數(shù)據(jù)進行標準化處理,以下哪種方法較為常見?()A.Z-score標準化B.Min-Max標準化C.小數(shù)定標標準化D.以上都是4、在數(shù)據(jù)分析的市場調(diào)研中,假設(shè)要了解消費者對新產(chǎn)品的偏好和需求。以下哪種數(shù)據(jù)收集方法可能獲得更深入和真實的反饋?()A.在線調(diào)查問卷B.面對面訪談C.電話調(diào)查D.不進行調(diào)研,依靠以往經(jīng)驗推測5、在進行數(shù)據(jù)融合時,將多個數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)我們有來自不同部門的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)融合的描述,正確的是:()A.直接將不同數(shù)據(jù)源的數(shù)據(jù)簡單拼接,無需考慮數(shù)據(jù)格式和字段的一致性B.數(shù)據(jù)融合可能會引入重復(fù)和不一致的數(shù)據(jù),不需要處理C.建立統(tǒng)一的數(shù)據(jù)標準和數(shù)據(jù)清洗規(guī)則,能夠提高數(shù)據(jù)融合的質(zhì)量D.數(shù)據(jù)融合只適用于結(jié)構(gòu)相同的數(shù)據(jù)源,對于不同結(jié)構(gòu)的數(shù)據(jù)源無法進行融合6、在數(shù)據(jù)分析中,數(shù)據(jù)分析的方法有很多,其中聚類分析是一種常用的方法。以下關(guān)于聚類分析的描述中,錯誤的是?()A.聚類分析可以將數(shù)據(jù)分為不同的類別,使得同一類中的數(shù)據(jù)具有相似的特征B.聚類分析的結(jié)果可以用聚類中心和聚類半徑來表示C.聚類分析可以用于數(shù)據(jù)的分類和預(yù)測D.聚類分析的算法有多種,如k-means聚類、層次聚類等7、對于一個具有時間序列特征的數(shù)據(jù)集合,若要進行預(yù)測,以下哪種模型可能會考慮時間的滯后效應(yīng)?()A.自回歸移動平均模型B.支持向量回歸模型C.隨機森林回歸模型D.以上都可能8、數(shù)據(jù)分析中,數(shù)據(jù)挖掘算法的性能可以通過多種指標進行評估。以下關(guān)于數(shù)據(jù)挖掘算法性能評估指標的說法中,錯誤的是?()A.數(shù)據(jù)挖掘算法的性能可以通過準確率、召回率、F1值等指標進行評估B.數(shù)據(jù)挖掘算法的性能評估指標應(yīng)根據(jù)具體的問題和數(shù)據(jù)特點來選擇C.數(shù)據(jù)挖掘算法的性能評估指標只需要考慮算法的準確性,其他因素可以忽略不計D.數(shù)據(jù)挖掘算法的性能評估應(yīng)在不同的數(shù)據(jù)集上進行測試,以確保結(jié)果的可靠性9、在構(gòu)建數(shù)據(jù)分析模型時,特征工程起著關(guān)鍵作用。假設(shè)我們正在構(gòu)建一個預(yù)測房價的模型,擁有房屋面積、房間數(shù)量、地理位置等原始數(shù)據(jù)。以下哪種特征工程方法可能有助于提高模型的性能?()A.對數(shù)值型特征進行標準化處理B.忽略地理位置特征,因為它難以量化C.直接使用原始數(shù)據(jù),不進行任何處理D.將所有特征組合成一個綜合特征10、當分析兩個連續(xù)變量之間的線性關(guān)系時,以下哪個統(tǒng)計量的值在-1到1之間?()A.相關(guān)系數(shù)B.決定系數(shù)C.方差膨脹因子D.協(xié)方差11、在對一個社交媒體平臺的用戶興趣數(shù)據(jù)進行分析,例如關(guān)注的話題、參與的討論組等,以進行精準的廣告投放。以下哪種數(shù)據(jù)挖掘技術(shù)可能在用戶畫像和廣告定向中發(fā)揮重要作用?()A.分類算法B.聚類算法C.關(guān)聯(lián)規(guī)則挖掘D.以上都是12、在數(shù)據(jù)庫中,若要提高數(shù)據(jù)的寫入性能,以下哪種存儲引擎可能更適合?()A.InnoDBB.MyISAMC.MemoryD.Archive13、在數(shù)據(jù)清洗過程中,若發(fā)現(xiàn)數(shù)據(jù)存在異常值,以下哪種處理方式較為合理?()A.直接刪除異常值B.對異常值進行修正C.將異常值視為缺失值處理D.分析異常值產(chǎn)生的原因后再決定處理方式14、假設(shè)要分析某公司不同產(chǎn)品線的利潤貢獻度,以下哪種圖表能夠清晰地展示各產(chǎn)品線的利潤占比及排名?()A.帕累托圖B.桑基圖C.弦圖D.以上都不是15、假設(shè)要分析一個零售企業(yè)的庫存數(shù)據(jù),包括商品種類、庫存數(shù)量、銷售速度等,以制定合理的補貨策略。以下哪個因素可能對庫存管理的效率產(chǎn)生最大影響?()A.商品的銷售預(yù)測準確性B.供應(yīng)商的交貨時間C.庫存成本D.以上都是16、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是重要的前置步驟。假設(shè)我們有一個包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯誤數(shù)據(jù)和重復(fù)記錄。以下關(guān)于數(shù)據(jù)清洗方法的描述,正確的是:()A.直接刪除包含缺失值的記錄,以快速簡化數(shù)據(jù)集B.對于錯誤數(shù)據(jù),可以根據(jù)經(jīng)驗進行手動修正,無需考慮數(shù)據(jù)的分布和規(guī)律C.使用均值或中位數(shù)來填充缺失值,不考慮數(shù)據(jù)的特征和潛在影響D.采用合適的算法和工具,識別并處理重復(fù)記錄、缺失值和錯誤數(shù)據(jù),同時考慮數(shù)據(jù)的特點和業(yè)務(wù)需求17、數(shù)據(jù)分析中的決策樹算法具有易于理解和解釋的特點。假設(shè)我們構(gòu)建了一個決策樹來預(yù)測客戶是否會購買某產(chǎn)品,以下哪個因素可能影響決策樹的復(fù)雜度和準確性?()A.特征選擇B.分裂準則C.剪枝策略D.以上都是18、在數(shù)據(jù)分析中,選擇合適的統(tǒng)計量來描述數(shù)據(jù)的集中趨勢和離散程度是很重要的。假設(shè)你有一組員工的工資數(shù)據(jù),以下關(guān)于統(tǒng)計量的選擇,哪一項是最合適的?()A.用中位數(shù)描述集中趨勢,用方差描述離散程度B.用均值描述集中趨勢,用標準差描述離散程度C.用眾數(shù)描述集中趨勢,用極差描述離散程度D.隨機選擇統(tǒng)計量,不考慮數(shù)據(jù)的特點19、在進行數(shù)據(jù)分析時,若數(shù)據(jù)的樣本量較小,以下哪種統(tǒng)計方法需要謹慎使用?()A.方差分析B.t檢驗C.非參數(shù)檢驗D.回歸分析20、數(shù)據(jù)分析中的特征工程旨在從原始數(shù)據(jù)中提取有意義的特征。假設(shè)我們在分析文本數(shù)據(jù),以下哪種特征提取方法可能有助于將文本轉(zhuǎn)化為可用于模型訓(xùn)練的數(shù)值特征?()A.詞袋模型B.TF-IDFC.詞嵌入D.以上都是二、簡答題(本大題共3個小題,共15分)1、(本題5分)闡述隨機森林算法的特點和優(yōu)勢,與單個決策樹相比,它在性能和穩(wěn)定性方面有何改進,并舉例說明其應(yīng)用。2、(本題5分)描述數(shù)據(jù)挖掘中的文本挖掘任務(wù),如文本分類、情感分析等的主要方法和技術(shù),并舉例說明在社交媒體數(shù)據(jù)分析中的應(yīng)用。3、(本題5分)解釋什么是聯(lián)邦學習,說明其在數(shù)據(jù)隱私保護和分布式計算中的應(yīng)用場景和優(yōu)勢,并舉例分析。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)一家快遞公司記錄了包裹的運輸數(shù)據(jù),包括發(fā)貨地、收貨地、重量、運輸時間、費用等。研究不同發(fā)貨地和收貨地之間的運輸時間和費用差異。2、(本題5分)某網(wǎng)約車平臺的無障礙服務(wù)存有數(shù)據(jù),包括服務(wù)需求、服務(wù)響應(yīng)時間、用戶評價、司機培訓(xùn)等。分析服務(wù)需求和司機培訓(xùn)對服務(wù)響應(yīng)時間和用戶評價的作用。3、(本題5分)某在線招聘平臺擁有求職者的簡歷數(shù)據(jù)、企業(yè)招聘需求、面試評價等信息。思考如何通過這些數(shù)據(jù)提高人才匹配度和招聘效率。4、(本題5分)某快遞公司擁有包裹的收發(fā)地址、運輸時間、投訴記錄等數(shù)據(jù)。分析如何通過這些數(shù)據(jù)優(yōu)化物流路線和服務(wù)質(zhì)量,降低運營成本。5、(本題5分)某網(wǎng)約車平臺收集了司機的接單習慣、服務(wù)評價、工作時間等。研究怎樣借助這些數(shù)據(jù)提高司機的服務(wù)質(zhì)量和工作效率。四、論述題(本大題共2個小題,共20分)1、(本題10

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論