湖州職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)挖掘及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
湖州職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)挖掘及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
湖州職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)挖掘及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
湖州職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)挖掘及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
湖州職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)挖掘及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

裝訂線裝訂線PAGE2第1頁(yè),共3頁(yè)湖州職業(yè)技術(shù)學(xué)院

《大數(shù)據(jù)挖掘及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在處理時(shí)間序列數(shù)據(jù)時(shí),如果需要預(yù)測(cè)未來(lái)多個(gè)時(shí)間點(diǎn)的值,以下哪種模型較為適用?()A.AR模型B.MA模型C.ARMA模型D.ARIMA模型2、在數(shù)據(jù)庫(kù)管理中,若要確保數(shù)據(jù)的一致性和完整性,通常會(huì)使用哪種約束?()A.主鍵約束B.外鍵約束C.唯一約束D.以上都是3、在數(shù)據(jù)分析中,若要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理,以下哪種方法較為常見?()A.Z-score標(biāo)準(zhǔn)化B.Min-Max標(biāo)準(zhǔn)化C.小數(shù)定標(biāo)標(biāo)準(zhǔn)化D.以上都是4、在數(shù)據(jù)分析的市場(chǎng)調(diào)研中,假設(shè)要了解消費(fèi)者對(duì)新產(chǎn)品的偏好和需求。以下哪種數(shù)據(jù)收集方法可能獲得更深入和真實(shí)的反饋?()A.在線調(diào)查問(wèn)卷B.面對(duì)面訪談C.電話調(diào)查D.不進(jìn)行調(diào)研,依靠以往經(jīng)驗(yàn)推測(cè)5、在進(jìn)行數(shù)據(jù)融合時(shí),將多個(gè)數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)我們有來(lái)自不同部門的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)融合的描述,正確的是:()A.直接將不同數(shù)據(jù)源的數(shù)據(jù)簡(jiǎn)單拼接,無(wú)需考慮數(shù)據(jù)格式和字段的一致性B.數(shù)據(jù)融合可能會(huì)引入重復(fù)和不一致的數(shù)據(jù),不需要處理C.建立統(tǒng)一的數(shù)據(jù)標(biāo)準(zhǔn)和數(shù)據(jù)清洗規(guī)則,能夠提高數(shù)據(jù)融合的質(zhì)量D.數(shù)據(jù)融合只適用于結(jié)構(gòu)相同的數(shù)據(jù)源,對(duì)于不同結(jié)構(gòu)的數(shù)據(jù)源無(wú)法進(jìn)行融合6、在數(shù)據(jù)分析中,數(shù)據(jù)分析的方法有很多,其中聚類分析是一種常用的方法。以下關(guān)于聚類分析的描述中,錯(cuò)誤的是?()A.聚類分析可以將數(shù)據(jù)分為不同的類別,使得同一類中的數(shù)據(jù)具有相似的特征B.聚類分析的結(jié)果可以用聚類中心和聚類半徑來(lái)表示C.聚類分析可以用于數(shù)據(jù)的分類和預(yù)測(cè)D.聚類分析的算法有多種,如k-means聚類、層次聚類等7、對(duì)于一個(gè)具有時(shí)間序列特征的數(shù)據(jù)集合,若要進(jìn)行預(yù)測(cè),以下哪種模型可能會(huì)考慮時(shí)間的滯后效應(yīng)?()A.自回歸移動(dòng)平均模型B.支持向量回歸模型C.隨機(jī)森林回歸模型D.以上都可能8、數(shù)據(jù)分析中,數(shù)據(jù)挖掘算法的性能可以通過(guò)多種指標(biāo)進(jìn)行評(píng)估。以下關(guān)于數(shù)據(jù)挖掘算法性能評(píng)估指標(biāo)的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘算法的性能可以通過(guò)準(zhǔn)確率、召回率、F1值等指標(biāo)進(jìn)行評(píng)估B.數(shù)據(jù)挖掘算法的性能評(píng)估指標(biāo)應(yīng)根據(jù)具體的問(wèn)題和數(shù)據(jù)特點(diǎn)來(lái)選擇C.數(shù)據(jù)挖掘算法的性能評(píng)估指標(biāo)只需要考慮算法的準(zhǔn)確性,其他因素可以忽略不計(jì)D.數(shù)據(jù)挖掘算法的性能評(píng)估應(yīng)在不同的數(shù)據(jù)集上進(jìn)行測(cè)試,以確保結(jié)果的可靠性9、在構(gòu)建數(shù)據(jù)分析模型時(shí),特征工程起著關(guān)鍵作用。假設(shè)我們正在構(gòu)建一個(gè)預(yù)測(cè)房?jī)r(jià)的模型,擁有房屋面積、房間數(shù)量、地理位置等原始數(shù)據(jù)。以下哪種特征工程方法可能有助于提高模型的性能?()A.對(duì)數(shù)值型特征進(jìn)行標(biāo)準(zhǔn)化處理B.忽略地理位置特征,因?yàn)樗y以量化C.直接使用原始數(shù)據(jù),不進(jìn)行任何處理D.將所有特征組合成一個(gè)綜合特征10、當(dāng)分析兩個(gè)連續(xù)變量之間的線性關(guān)系時(shí),以下哪個(gè)統(tǒng)計(jì)量的值在-1到1之間?()A.相關(guān)系數(shù)B.決定系數(shù)C.方差膨脹因子D.協(xié)方差11、在對(duì)一個(gè)社交媒體平臺(tái)的用戶興趣數(shù)據(jù)進(jìn)行分析,例如關(guān)注的話題、參與的討論組等,以進(jìn)行精準(zhǔn)的廣告投放。以下哪種數(shù)據(jù)挖掘技術(shù)可能在用戶畫像和廣告定向中發(fā)揮重要作用?()A.分類算法B.聚類算法C.關(guān)聯(lián)規(guī)則挖掘D.以上都是12、在數(shù)據(jù)庫(kù)中,若要提高數(shù)據(jù)的寫入性能,以下哪種存儲(chǔ)引擎可能更適合?()A.InnoDBB.MyISAMC.MemoryD.Archive13、在數(shù)據(jù)清洗過(guò)程中,若發(fā)現(xiàn)數(shù)據(jù)存在異常值,以下哪種處理方式較為合理?()A.直接刪除異常值B.對(duì)異常值進(jìn)行修正C.將異常值視為缺失值處理D.分析異常值產(chǎn)生的原因后再?zèng)Q定處理方式14、假設(shè)要分析某公司不同產(chǎn)品線的利潤(rùn)貢獻(xiàn)度,以下哪種圖表能夠清晰地展示各產(chǎn)品線的利潤(rùn)占比及排名?()A.帕累托圖B.?;鶊DC.弦圖D.以上都不是15、假設(shè)要分析一個(gè)零售企業(yè)的庫(kù)存數(shù)據(jù),包括商品種類、庫(kù)存數(shù)量、銷售速度等,以制定合理的補(bǔ)貨策略。以下哪個(gè)因素可能對(duì)庫(kù)存管理的效率產(chǎn)生最大影響?()A.商品的銷售預(yù)測(cè)準(zhǔn)確性B.供應(yīng)商的交貨時(shí)間C.庫(kù)存成本D.以上都是16、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是重要的前置步驟。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄。以下關(guān)于數(shù)據(jù)清洗方法的描述,正確的是:()A.直接刪除包含缺失值的記錄,以快速簡(jiǎn)化數(shù)據(jù)集B.對(duì)于錯(cuò)誤數(shù)據(jù),可以根據(jù)經(jīng)驗(yàn)進(jìn)行手動(dòng)修正,無(wú)需考慮數(shù)據(jù)的分布和規(guī)律C.使用均值或中位數(shù)來(lái)填充缺失值,不考慮數(shù)據(jù)的特征和潛在影響D.采用合適的算法和工具,識(shí)別并處理重復(fù)記錄、缺失值和錯(cuò)誤數(shù)據(jù),同時(shí)考慮數(shù)據(jù)的特點(diǎn)和業(yè)務(wù)需求17、數(shù)據(jù)分析中的決策樹算法具有易于理解和解釋的特點(diǎn)。假設(shè)我們構(gòu)建了一個(gè)決策樹來(lái)預(yù)測(cè)客戶是否會(huì)購(gòu)買某產(chǎn)品,以下哪個(gè)因素可能影響決策樹的復(fù)雜度和準(zhǔn)確性?()A.特征選擇B.分裂準(zhǔn)則C.剪枝策略D.以上都是18、在數(shù)據(jù)分析中,選擇合適的統(tǒng)計(jì)量來(lái)描述數(shù)據(jù)的集中趨勢(shì)和離散程度是很重要的。假設(shè)你有一組員工的工資數(shù)據(jù),以下關(guān)于統(tǒng)計(jì)量的選擇,哪一項(xiàng)是最合適的?()A.用中位數(shù)描述集中趨勢(shì),用方差描述離散程度B.用均值描述集中趨勢(shì),用標(biāo)準(zhǔn)差描述離散程度C.用眾數(shù)描述集中趨勢(shì),用極差描述離散程度D.隨機(jī)選擇統(tǒng)計(jì)量,不考慮數(shù)據(jù)的特點(diǎn)19、在進(jìn)行數(shù)據(jù)分析時(shí),若數(shù)據(jù)的樣本量較小,以下哪種統(tǒng)計(jì)方法需要謹(jǐn)慎使用?()A.方差分析B.t檢驗(yàn)C.非參數(shù)檢驗(yàn)D.回歸分析20、數(shù)據(jù)分析中的特征工程旨在從原始數(shù)據(jù)中提取有意義的特征。假設(shè)我們?cè)诜治鑫谋緮?shù)據(jù),以下哪種特征提取方法可能有助于將文本轉(zhuǎn)化為可用于模型訓(xùn)練的數(shù)值特征?()A.詞袋模型B.TF-IDFC.詞嵌入D.以上都是二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)闡述隨機(jī)森林算法的特點(diǎn)和優(yōu)勢(shì),與單個(gè)決策樹相比,它在性能和穩(wěn)定性方面有何改進(jìn),并舉例說(shuō)明其應(yīng)用。2、(本題5分)描述數(shù)據(jù)挖掘中的文本挖掘任務(wù),如文本分類、情感分析等的主要方法和技術(shù),并舉例說(shuō)明在社交媒體數(shù)據(jù)分析中的應(yīng)用。3、(本題5分)解釋什么是聯(lián)邦學(xué)習(xí),說(shuō)明其在數(shù)據(jù)隱私保護(hù)和分布式計(jì)算中的應(yīng)用場(chǎng)景和優(yōu)勢(shì),并舉例分析。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)一家快遞公司記錄了包裹的運(yùn)輸數(shù)據(jù),包括發(fā)貨地、收貨地、重量、運(yùn)輸時(shí)間、費(fèi)用等。研究不同發(fā)貨地和收貨地之間的運(yùn)輸時(shí)間和費(fèi)用差異。2、(本題5分)某網(wǎng)約車平臺(tái)的無(wú)障礙服務(wù)存有數(shù)據(jù),包括服務(wù)需求、服務(wù)響應(yīng)時(shí)間、用戶評(píng)價(jià)、司機(jī)培訓(xùn)等。分析服務(wù)需求和司機(jī)培訓(xùn)對(duì)服務(wù)響應(yīng)時(shí)間和用戶評(píng)價(jià)的作用。3、(本題5分)某在線招聘平臺(tái)擁有求職者的簡(jiǎn)歷數(shù)據(jù)、企業(yè)招聘需求、面試評(píng)價(jià)等信息。思考如何通過(guò)這些數(shù)據(jù)提高人才匹配度和招聘效率。4、(本題5分)某快遞公司擁有包裹的收發(fā)地址、運(yùn)輸時(shí)間、投訴記錄等數(shù)據(jù)。分析如何通過(guò)這些數(shù)據(jù)優(yōu)化物流路線和服務(wù)質(zhì)量,降低運(yùn)營(yíng)成本。5、(本題5分)某網(wǎng)約車平臺(tái)收集了司機(jī)的接單習(xí)慣、服務(wù)評(píng)價(jià)、工作時(shí)間等。研究怎樣借助這些數(shù)據(jù)提高司機(jī)的服務(wù)質(zhì)量和工作效率。四、論述題(本大題共2個(gè)小題,共20分)1、(本題10

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論