貴陽康養(yǎng)職業(yè)大學(xué)《人工智能程序設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
貴陽康養(yǎng)職業(yè)大學(xué)《人工智能程序設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
貴陽康養(yǎng)職業(yè)大學(xué)《人工智能程序設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
貴陽康養(yǎng)職業(yè)大學(xué)《人工智能程序設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
貴陽康養(yǎng)職業(yè)大學(xué)《人工智能程序設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準考證號學(xué)校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁貴陽康養(yǎng)職業(yè)大學(xué)《人工智能程序設(shè)計》

2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、人工智能中的語音識別技術(shù)在智能語音交互中起著重要作用。假設(shè)我們要提高語音識別系統(tǒng)在嘈雜環(huán)境下的性能,以下關(guān)于解決方法的說法,哪一項是不正確的?()A.使用更先進的聲學(xué)模型B.增加訓(xùn)練數(shù)據(jù)的多樣性C.降低語音信號的采樣率D.采用噪聲抑制技術(shù)2、在人工智能的決策樹算法中,當進行特征選擇來構(gòu)建決策樹時,以下哪種特征選擇標準通常能夠產(chǎn)生更優(yōu)的決策樹?()A.信息增益B.基尼系數(shù)C.隨機選擇特征D.選擇特征數(shù)量最多的特征3、人工智能在教育領(lǐng)域的應(yīng)用逐漸增多,例如個性化學(xué)習(xí)、智能輔導(dǎo)系統(tǒng)等。以下關(guān)于人工智能在教育領(lǐng)域應(yīng)用的說法,錯誤的是()A.可以根據(jù)學(xué)生的學(xué)習(xí)情況和特點,為其提供個性化的學(xué)習(xí)路徑和資源推薦B.能夠?qū)崟r監(jiān)測學(xué)生的學(xué)習(xí)狀態(tài),及時給予反饋和指導(dǎo)C.人工智能在教育領(lǐng)域的應(yīng)用可以完全取代教師的作用,實現(xiàn)教育的自動化D.有助于提高教育的效率和質(zhì)量,但也需要關(guān)注學(xué)生的隱私和數(shù)據(jù)安全問題4、人工智能在醫(yī)療影像診斷中的應(yīng)用越來越受到關(guān)注。假設(shè)要開發(fā)一個能夠輔助醫(yī)生診斷肺部疾病的系統(tǒng),以下關(guān)于模型的可解釋性和透明度的要求,哪一項是最為重要的?()A.能夠準確診斷疾病即可,不需要解釋診斷的依據(jù)B.以可視化的方式展示模型對肺部影像的分析過程和決策依據(jù)C.提供一個簡單的診斷結(jié)果,不解釋模型是如何得出這個結(jié)果的D.隱藏模型的內(nèi)部工作原理,以防止被競爭對手模仿5、人工智能中的無人駕駛技術(shù)面臨著眾多技術(shù)和法律挑戰(zhàn)。假設(shè)我們在討論無人駕駛汽車的責(zé)任歸屬問題,以下關(guān)于無人駕駛責(zé)任的說法,哪一項是不正確的?()A.事故責(zé)任的判定應(yīng)該綜合考慮多種因素B.完全由無人駕駛汽車的制造商承擔(dān)責(zé)任C.法律法規(guī)需要隨著技術(shù)發(fā)展不斷完善D.乘客在某些情況下也可能承擔(dān)一定責(zé)任6、在一個利用人工智能進行智能客服的系統(tǒng)中,為了提高回答的準確性和全面性,以下哪個方面的優(yōu)化可能是關(guān)鍵的?()A.知識庫的構(gòu)建和更新B.自然語言處理模型的改進C.對話流程的設(shè)計D.以上都是7、在人工智能的圖像識別領(lǐng)域,除了卷積神經(jīng)網(wǎng)絡(luò),還有其他一些方法和技術(shù)。假設(shè)我們要對衛(wèi)星圖像中的地物進行分類,以下哪種方法可能會與卷積神經(jīng)網(wǎng)絡(luò)結(jié)合使用,以提高分類效果?()A.支持向量機B.決策樹C.聚類分析D.以上都有可能8、在人工智能的圖像生成任務(wù)中,變分自編碼器(VAE)是一種常用的模型。假設(shè)要使用VAE生成新的圖像,以下關(guān)于VAE的描述,正確的是:()A.VAE通過學(xué)習(xí)數(shù)據(jù)的潛在分布來生成新的圖像,生成的圖像與原始數(shù)據(jù)完全相同B.VAE生成的圖像質(zhì)量不如生成對抗網(wǎng)絡(luò)(GAN),因此在實際應(yīng)用中逐漸被淘汰C.VAE可以在生成圖像的同時對圖像進行壓縮和編碼,節(jié)省存儲空間D.VAE只能用于生成簡單的圖像,如數(shù)字和幾何圖形,無法生成復(fù)雜的自然圖像9、在人工智能的語音識別領(lǐng)域,假設(shè)要開發(fā)一個能夠準確識別不同口音和背景噪聲下的語音識別系統(tǒng),以下關(guān)于語音識別技術(shù)的描述,正確的是:()A.語音識別系統(tǒng)只需要對清晰、標準的語音進行訓(xùn)練,就能應(yīng)對各種復(fù)雜情況B.增加訓(xùn)練數(shù)據(jù)中的口音和噪聲樣本可以提高系統(tǒng)在復(fù)雜環(huán)境下的識別能力C.語音識別的準確率只取決于聲學(xué)模型,與語言模型無關(guān)D.現(xiàn)有的語音識別技術(shù)已經(jīng)能夠達到100%的準確率,無需進一步改進10、在人工智能的醫(yī)療影像診斷中,深度學(xué)習(xí)模型可以輔助醫(yī)生發(fā)現(xiàn)病變。假設(shè)要評估一個深度學(xué)習(xí)模型在乳腺X光影像診斷中的性能,以下哪個指標是最重要的?()A.準確率B.召回率C.F1值D.特異性11、強化學(xué)習(xí)是人工智能的一個重要分支,常用于訓(xùn)練智能體在環(huán)境中做出最優(yōu)決策。假設(shè)一個智能機器人需要在迷宮中找到出口,通過與環(huán)境的交互獲得獎勵。在這種情況下,以下關(guān)于強化學(xué)習(xí)算法的選擇,哪一項是最合適的?()A.Q-learning算法,通過估計狀態(tài)-動作值函數(shù)來選擇最優(yōu)動作B.策略梯度算法,直接優(yōu)化策略以最大化期望回報C.蒙特卡羅方法,通過隨機采樣來估計價值函數(shù)D.以上算法都不合適,應(yīng)該選擇其他方法12、在自然語言處理中,機器翻譯是一個重要的應(yīng)用。假設(shè)正在開發(fā)一種新的機器翻譯模型,以下關(guān)于機器翻譯技術(shù)的描述,正確的是:()A.基于規(guī)則的機器翻譯方法總是能夠生成最準確和自然的翻譯結(jié)果B.神經(jīng)網(wǎng)絡(luò)機器翻譯模型不需要大量的平行語料進行訓(xùn)練就能達到很好的效果C.結(jié)合統(tǒng)計方法和神經(jīng)網(wǎng)絡(luò)的機器翻譯模型能夠更好地處理復(fù)雜的語言結(jié)構(gòu)和語義D.機器翻譯的質(zhì)量只取決于所使用的算法,與語言的文化背景和語境無關(guān)13、當利用人工智能進行音樂創(chuàng)作,生成具有創(chuàng)新性和藝術(shù)價值的音樂作品,以下哪種方法和技術(shù)可能會被運用?()A.基于模板的生成B.基于風(fēng)格遷移C.基于生成模型D.以上都是14、當利用人工智能進行欺詐檢測,例如在金融交易中識別異常行為,以下哪種特征和模型可能是關(guān)鍵的因素?()A.用戶行為特征B.交易模式特征C.復(fù)雜的深度學(xué)習(xí)模型D.以上都是15、在人工智能的發(fā)展中,機器學(xué)習(xí)是一個重要的分支。假設(shè)一個醫(yī)療團隊想要利用機器學(xué)習(xí)來預(yù)測某種疾病的發(fā)病風(fēng)險,他們收集了大量患者的基因數(shù)據(jù)、生活習(xí)慣、病史等多維度信息。在選擇機器學(xué)習(xí)算法時,需要考慮數(shù)據(jù)的特點、模型的復(fù)雜度和預(yù)測的準確性等因素。以下哪種機器學(xué)習(xí)算法可能最適合這個任務(wù)?()A.決策樹算法,通過對特征的逐步劃分進行預(yù)測B.線性回歸算法,建立變量之間的線性關(guān)系進行預(yù)測C.支持向量機算法,尋找最優(yōu)分類超平面進行分類預(yù)測D.樸素貝葉斯算法,基于概率計算進行分類二、簡答題(本大題共3個小題,共15分)1、(本題5分)解釋凸優(yōu)化和非凸優(yōu)化的概念。2、(本題5分)簡述人工智能對社會結(jié)構(gòu)和文化的影響。3、(本題5分)解釋人工智能在環(huán)境保護中的作用。三、操作題(本大題共5個小題,共25分)1、(本題5分)利用Python的OpenCV庫,實現(xiàn)對圖像的拉普拉斯變換。分析變換后的圖像特點和在邊緣檢測中的應(yīng)用。2、(本題5分)運用Python中的TensorFlow框架,構(gòu)建一個基于膠囊網(wǎng)絡(luò)(CapsuleNetwork)的模型,對MNIST數(shù)據(jù)集進行分類。與傳統(tǒng)的卷積神經(jīng)網(wǎng)絡(luò)進行對比,分析膠囊網(wǎng)絡(luò)的優(yōu)勢和局限性。3、(本題5分)運用Python的TensorFlow框架,構(gòu)建一個基于生成對抗網(wǎng)絡(luò)(GAN)的圖像超分辨率重建模型。將低分辨率圖像重建為高分辨率圖像,評估重建效果。4、(本題5分)使用聚類算法對醫(yī)學(xué)圖像數(shù)據(jù)進行分析,發(fā)現(xiàn)不同的病理特征和疾病類型,輔助醫(yī)生進行診斷。5、(本題5分)運用Python中的Scikit-learn庫,實現(xiàn)譜聚類算法對圖像數(shù)據(jù)進行分割,比較不同參數(shù)設(shè)置下的分割

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論