高教版《數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)第3版》DNA序列分類競賽題_第1頁
高教版《數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)第3版》DNA序列分類競賽題_第2頁
高教版《數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)第3版》DNA序列分類競賽題_第3頁
高教版《數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)第3版》DNA序列分類競賽題_第4頁
高教版《數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)第3版》DNA序列分類競賽題_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

DNA序列分類

摘要本問題是一個“有人管理分類問題”.首先分別列舉出20個學(xué)習(xí)樣本序列中1字符串、2

字符串、3字符串出現(xiàn)的頻率,構(gòu)成含41個變量的基本特征集,接著用主成分分析法從中提

取出4個特征.然后用Fisher線性判別法進(jìn)行分類,得出了所求20個人工制造序列及182個

自然序列的分類結(jié)果如下:

1)20個人工序列:22,23,25,27,29,34,35,36,37為A類,其余為B類.

2)182個自然序列:1,4,8,10,27,29,32,41,43,48,54,63,70,72,75,76,81,

86,90,92,102,110,116,119,126,131,144,150,157,159,160,161,162,163,

164,165,166,169,170,182為B類,其余為A類.

最后通過檢驗(yàn)證明所用的分類數(shù)學(xué)模型效率較高.

一、問題重述

人類基因組計(jì)劃中DNA全序列草圖是由4個字符A,T,C,G按一定順序排成的長約

30億的字符序列,其中沒有“斷句”也沒有標(biāo)點(diǎn)符號.雖然人類對它知之甚少,但也發(fā)現(xiàn)了

其中的一些規(guī)律性和結(jié)構(gòu).例如,在全序列中有一些是用于編碼蛋白質(zhì)的序列片段,即由這4

個字符組成的64種不同的3字符串,其中大多數(shù)用于編碼構(gòu)成蛋白質(zhì)的20種氨基酸.又例如,

在不用于編碼蛋白質(zhì)的序列片段中,A和T的含量特別多些,于是以某些堿基特別豐富作為

特征去研究DNA序列的結(jié)構(gòu)也取得了一些結(jié)果.此外,利用統(tǒng)計(jì)的方法還發(fā)現(xiàn)序列的某些片

段之間具有相關(guān)性,等等.這些發(fā)現(xiàn)讓人們相信,DNA序列中存在著局部的和全局性的結(jié)構(gòu),

充分發(fā)掘序列的結(jié)構(gòu)對理解DNA全序列是十分有意義的.目前在這項(xiàng)研究中最普通的思想是

省略序列的某些細(xì)節(jié),突出特征,然后將其表示成適當(dāng)?shù)臄?shù)學(xué)對象.

作為研究DNA序列的結(jié)構(gòu)的嘗試,提出以下對序列集合進(jìn)行分類的問題:

1)請從20個已知類別的人工制造的序列(其中序列標(biāo)號1?10為A類,11?20為B類)

中提取特征,構(gòu)造分類方法,并用這些已知類別的序列,衡量你的方法是否足夠好.然后用

你認(rèn)為滿意的方法,對另外20個未標(biāo)明類別的人工序列(標(biāo)號21?40)進(jìn)行分類,把結(jié)果用

序號(按從小到大的順序)標(biāo)明他們的類別(無法分類的不寫入)

2)同樣方法對182個自然DNA序列(他們都較長)進(jìn)行分類,像1)一樣地給出分類結(jié)果.

二、模型的合理假設(shè)

1.各序列中DNA堿基三聯(lián)組(即3字符串)的起始位置和基因表達(dá)不影響分類的結(jié)果.

2.64種3字符串壓縮為20組后不影響分類的結(jié)果.

3.較長的182個自然序列與已知類別的20個樣本序列具有共同的特征.

三、模型建立與求解

研究DNA序列具有什么結(jié)構(gòu),其A,T,C,G4個堿基排成的看似隨機(jī)的序列中隱藏著

什么規(guī)律,是解讀人類基因組計(jì)劃中DNA全序列草圖的基礎(chǔ),也是生物信息學(xué)(Bioinformates)

最重要的課題之一.

題目給出了20個已知為兩個類別的人工制造的DNA序列,要求我們從中提取特征,構(gòu)

造分類方法,從而對20個未標(biāo)明類別的人工DNA序列和182個自然DNA序列進(jìn)行分類.這

是模式識別中的“有人管理分類”問題,即事先規(guī)定了分類的標(biāo)準(zhǔn)和種類的數(shù)目,通過大批

已知樣本的信息處理找出規(guī)律,再用計(jì)算機(jī)預(yù)報(bào)未知.給出的已知類別的樣本稱為學(xué)習(xí)樣

本.對于此類問題,我們通過建立分類數(shù)學(xué)模型(這包括形成和提取特征以及制定分類決策)、

考查分類模型的效率、預(yù)報(bào)未知這幾個步驟來進(jìn)行.

(一)特征的形成和提取

為了有效地實(shí)現(xiàn)分類識別,首先要根據(jù)被識別的對象產(chǎn)生一組基本特征,并對基本特征

進(jìn)行變換,得到最能反映分類本質(zhì)的特征.這就是特征形成和提取的過程.在列舉了盡可能

完備的特征參數(shù)集之后,就要借助于數(shù)學(xué)的方法,使特征參數(shù)的數(shù)目(在保證分類良好的前

提下)減到最小.這是因?yàn)椋?.多余的特征參數(shù)不但沒有多少好處,而且會帶來噪音,干擾分

類和數(shù)學(xué)模型的建立.2.為了保證樣本數(shù)和特征參數(shù)個數(shù)的比值足夠大,而又不必要用太多的

樣本,最好使特征參數(shù)的個數(shù)降至最少.模式識別計(jì)算一般要求樣本數(shù)至少為變量數(shù)的3倍,

否則結(jié)果不夠可靠.本問題的學(xué)習(xí)樣本數(shù)為20個,故特征參數(shù)的個數(shù)以6?8個為宜.

我們通過研究4個字符AIGG在DNA序列中的排列、組合特性,主要是研究字符和字

符串的排列在序列中出現(xiàn)的頻率,從中提取DNA序列的結(jié)構(gòu)特征參數(shù).

1.特征的形成

分別列舉一個字符,2個字符,3個字符的排列在序列中出現(xiàn)的頻率,構(gòu)成基本特征集.

(1)1個字符的出現(xiàn)頻率

表1列出了20個樣本中A,T,C,G這4個字符出現(xiàn)的頻率.由于在不用于編碼蛋

白質(zhì)的序列片段中,4和7的含量特別多些,因此我們將A和T是否特別豐富作為一個特征.在

表1中,列出了4和T出現(xiàn)的頻率之和.(程序見附錄一)

表1

ACTGA+T

1.29.7317.1213.5139.6443.24

2.27.0316.2215.3241.4442.34

3.27.0321.626.3145.0533.33

4.42.3410.8128.8318.0271.17

5.23.4223.4210.8142.3434.23

6.35.1412.6112.6139.6447.75

7.35.149.9118.9236.0454.05

8.27.9316.2218.9236.9446.85

9.20.7220.7215.3243.2436.04

10.18.1827.2713.6440.9131.82

11.35.454.5550.0010.0085.45

12.32.732.7350.0014.5582.73

13.25.4510.0051.8212.7377.27

14.30.008.1850.0011.8280.00

15.29.09.0064.556.3693.64

16.36.368.1846.369.0982.73

17.35.4524.5526.3613.6461.82

18.29.0911.8250.009.0979.09

19.21.8214.5556.367.2778.18

20.20.0017.2756.366.3676.36

(2)2字符串的排列出現(xiàn)的頻率

A,T,C,G這4個字符組成了16種不同的2字符串.表2列出了20個樣本中各2字符

串出現(xiàn)的頻率.(用“滾動”算法,如ATTCG有AT,TT,TC,CG共4個2字符串)(程序與附錄

一類似)

表2

AAACATAGTATCTGTTCACTCCCGGAGTGCGG

1.9.019.013.608.114.50.904.503.603.603.601.808.1111.712.705.4118.92

2.9.917.213.605.412.701.805.415.414.501.80.909.019.914.505.4121.62

3.5.4111.713.605.412.701.80.90.905.41.90.9014.4113.51.907.2123.42

4.18.925.4111.715.4110.811.805.4110.815.411.80.902.706.314.502.704.50

5.6.318.111.807.211.802.702.703.605.414.502.7010.819.91.909.0121.62

6.15.322.706.319.913.601.801.805.414.50.00.008.1110.81.908.1119.82

7.15.321.8010.817.214.502.706.315.41.901.80.906.3113.51.904.5016.22

8.8.113.606.319.915.413.602.707.212.703.601.808.1110.811.807.2116.22

9.9.01.904.506.31.003.607.214.503.602.702.7011.717.213.6013.5118.02

10.6.363.641.826.361.825.452.733.645.453.644.5513.644.553.6413.6418.18

11.15.452.7314.552.7316.36.911.8230.00.91.91.911.822.734.55.002.73

12.13.64.9110.916.3615.451.821.8230.91.91.91.00.912.737.27.004.55

13.6.364.5510.004.5512.731.822.7334.552.732.731.8如823.644.551.822.73

14.8.18.9112.737.2713.646.361.8228.182.734.55.00.915.454.55.91.91

15.13.64.0012.731.8213.64.002.7348.18.00.00.00.001.823.64.00.91

16.16.363.6415.45.9113.644.554.5522.731.825.45.00.914.552.73.001.82

17.17.275.4510.911.8210.006.364.555.454.557.279.092.733.642.733.643.64

18.8.187.2711.821.8215.451.82.9130.913.643.641.822.731.823.64.912.73

19.2.732.7313.641.8214.559.09.9131.821.828.181.822.732.732.73.91.91

20.6.366.366.36.919.0910.003.6432.732.7313.64.91.001.823.64.00.91

(3)3字符串的排列出現(xiàn)的頻率

A,T,C,G這4個字符組成了64種不同的3字符串.這64種3字符串構(gòu)成生物蛋白質(zhì)

的20種氨基酸.在參考文獻(xiàn)[1]的Figur2中,給出了這20種氨基酸的編碼(見圖1).因此,

在計(jì)算3字符串的出現(xiàn)頻率時,我們根據(jù)圖1將代表同一種氨基酸的3字符串合成一類,只統(tǒng)

計(jì)20類3字符串的出現(xiàn)頻率.(不考慮字符串在序列片段中的起始位置,也采用“滾動”算法.如

ACGTCC中就有ACG,CGT,GTC,TCC共4個3字符串)見表3.(程序與附錄一類似)

■■

s二EQIEHX

i二

■EhIEI

二Ka

.二s

二EQE

二s

二EX

■5

二i

二QEal

二a

s二

Kaa

二Kwaa

si二

a

l

二Ka

iEI

Symmetriesofthediamondcodesortthe64codonsinto20classes4ndicatedhereby20colors.Allthecodonsineac

hclassspecifiedthesameaminoacid.

圖IBrianHayes在論文^ThelnventionoftheGeneticCode*中給出的圖形

(注:圖中DNA被轉(zhuǎn)錄為RNA,"U"代表"T")

表3

blb2b3b4b5b6b7b8b9bl0bllbl2bl3bl4bl5bl6bl7bl8bl9b20

11.773.542.650.880.000.007.960.884.422.6517.7010.623.544.424.427.081.773.5413.277.08

21.891.890.940.940.000.941.890.944.7212.267.5511.328.493.773.776.609.436.607.552.83

30.980.000.005.880.988.822.940.000.0029410.785.8813.730.004.903.9219.611.968.825.88

40.000.000.000.870.000.8713.041.746.092,6111.3013.043.4S5.223.4S8.703.481.7414.78,7.83

52.860.000.003.810.953.813.810.003.813.819.529.5212.382.869.524.767.622.867.629.52

60.000.000.882.630.001.7513.160.884391.7514.049.657.025.264.3911.402.631.7510.536.14

71.920.000.002.880.964.812.880.001.924.8112.506.7313.461.926.734.8110.583.859.627.69

82.563.420.000.850.850.8512.820.851.710.8520.51Z563.429.405.9811.110.854.2711.973.42

90.000.000.002.972.979.902.970.000.993.966.931.9813.861.982973.9623.762.978.916.93

101.870.933.742.800.000.002.800.007.488.419.357.433.7414.9512.150.002.804.677.487.48

110.000.890.000.000.001.798.040.005.364.4615.188.048.934.463.578.044.4662513.395.36

122.730.000.912.730.913.644.553.643.641.829.095.453.645.456.367.278.185.4510.919.09

131.800.900.900.900.000.909.010.003.607.2114.418.117.216317.214.501.8072111.714.50

142.940.000.005.880.006.861.960.003.926.863.929.8013.730.985.882.9410.780.9810.789.80

152.911.942.911.940.005.831.940.001.949.715.838.7410.681.943.883.888.742.9111.6510.68

162.860.950.0011.431.901.902.860.004.763.815.718.578.576.679.524.765.712.867.627.62

171.920.961.924.811.923.851.920.960.966.734.818.6510.582.886.732.889.626.738.657.69

181.710.851.710.850.852,5616.240.851.710.8516.245.136.845.983.4211.111.715.1311.113.42

190.940.941.890.940.940.941.890.9410.387.555.669.438.498.497.555.666.6011.326.600.94

200.860.860.001.720.860.8617.240.862.591.7215.527.765.173.454.319.485.175.179.485.17

其中bl=aaa4-atab2=aca4-agab3=cac+ctcb4=ccc+cgc

b5=gag+gtg^6=gcg+gggb7=tat4-tttb8=tct4-tgt

b9=aac4-caa+atc4-ctabl0=aag+gaa4-atg4-gta

bll=aat+taa4-att+ttabl2=acc+cca+agc+cga

bl3=acg4-gac+ctg+gtcbl4=act4-tca4-agt+tga

bl5=cag+gac+ctt+ttcbl6=cat+tac+ctt+ttc

bl7=ccg-*-gcc+cgg4-ggcbl8=cct4-tcc4-cgt+tgc

bl9=gat+tag4~gtt+ttgb20=gpt+tcg+ggt+t蜴

綜合起來,形成了有41個變量的基本特征集.

2.特征的提取

上述基本特征集中有41個變量,即樣本處于一個高維空間中.特征的提取就是通過

變換的方法用低維空間來表示樣本,使得x的大部分特性能由y來表達(dá),即將0維隨機(jī)

向量X變換成g維隨機(jī)向量y(好p).我們用主成分分析法進(jìn)行特征的提取,其步驟是:

(1)求x的均方差矩陣v的特征根,記為:

x1》入入々>0人紅1二??,=4p—0

(2)求入1入2…入K對應(yīng)的標(biāo)準(zhǔn)正交的特征向量4,政…4

得到第/個主成分為y7=r2=l,2,…甚

k

(3)求第/個主成分的貢獻(xiàn)率u尸入/ZAJ=ZZ…比及前m個主成分的累計(jì)貢獻(xiàn)率

/=|

產(chǎn)一

%=z%

i=l

(4)求得q,使得匕>%(%一般在0.85到1之間),則取

Y=XW

第3步所求的貢獻(xiàn)率,代表主成分表達(dá)X的能力,貢獻(xiàn)率越大,對應(yīng)的主成分表達(dá)X的

能力越強(qiáng).只要前9個主成分的累計(jì)貢獻(xiàn)率超過給定的百分比V.就可以用低維特征F=

(%ya…而)來反映高維特征(x/陽…不)的變化特性.

現(xiàn)將反映20個已知類別樣本的41個特征的隨機(jī)向量X進(jìn)行特征提取.

計(jì)算得前4個主成分的累計(jì)貢獻(xiàn)率為96%,故提取特征為4個變量,取

W=(a*#4),則Y=XW,F的4個分量就是從基本特征集提取所得的特征參數(shù)向量.(程

序及結(jié)果見附錄二)

(二)分類決策的制定

前面已選取了特征參數(shù),把特征參數(shù)張成的多維空間稱為特征空間.分類決策就是在特

征空間中用統(tǒng)計(jì)的方法把被識別對象歸為某一類別.基本作法是在學(xué)習(xí)樣本集的基礎(chǔ)上確定

某個判決規(guī)則,使按這種判決規(guī)則對被甄別對象進(jìn)行分類所造成的錯誤識別率最小或引起的

損失最少.

這里,我們的分類決策選取Fisher線性判別法.即選取線性判別函數(shù)及勾,使得:

伙勾={⑸[雙功-同伙功}2/{3[久期+2[久功}=max⑴

其中瓦與。分別表示母體/的期望和方差運(yùn)算,/=1,2.

(1)式的含義是:構(gòu)造一個線性判別函數(shù)如對樣本進(jìn)行分類,使得平均出錯概率最小.即

應(yīng)在不同母體下,使雙藥的取值盡量分開.具體地說,要使母體間的差異(耳(久功-E(次動產(chǎn)

相對于母體內(nèi)的差異■功+2[伙動為最大.取

久勾=(X)-X9T(EI+£2)"X

就可滿足⑴.其中又,為第7類母體的均值矩陣的估計(jì),Ei為第i類母體的方差矩陣的估計(jì).取

分類門檻值為:

U后貝X*%!+(!-?)*X2)

其中0<。<1,本問題中兩類樣本的個數(shù)相等,可取a=1/2.若火又為,伙文》<仇則當(dāng)

久為>為,就認(rèn)為X取自母體1;當(dāng)久蜀<Uo,就認(rèn)為X取自母體2.

用上面得出的4個主成分構(gòu)成的特征組和此分類決策,對20個學(xué)習(xí)樣本進(jìn)行分類,能得

出正確的結(jié)果.但是,若取片(“"?),求i^xw,以y的3個分量作為特征參數(shù)向量,再

用Fisher線性判別法對20個學(xué)習(xí)樣本進(jìn)行分類,則第四個樣本不能正確分類.

因此,得出分類的數(shù)學(xué)模型為:

(1)特征選取:取跆(”,史必),求『X%得出特征參數(shù)向量就是y的4個列

向量.其中X是反映20個學(xué)習(xí)樣本的41個特征的隨機(jī)向量.

(2)分類決策:Fisher線性判別法.

(三)分類模型的有效性考察

前面建立的分類數(shù)學(xué)模型對20個學(xué)習(xí)樣本進(jìn)行了正確分類.為了進(jìn)一步考查分類模

型的有效性和可靠性,我們采用的方法是:預(yù)先留一部分學(xué)習(xí)樣本不參加訓(xùn)練,然后用

分類決策模型對其作預(yù)報(bào),將預(yù)報(bào)成功率作為預(yù)報(bào)能力的指標(biāo).

每次取出一個學(xué)習(xí)樣本,以其余學(xué)習(xí)樣本作訓(xùn)練集,用分類決策模型對取出的一個

樣本作預(yù)報(bào),同時對給出的后20種樣本作預(yù)報(bào).結(jié)果見表4.

表4

取出樣品序號取出樣本類別預(yù)報(bào)后20組樣本中A類序號預(yù)報(bào)

1A22,23,25,27,29,34,35,36,37

2A22,23,25,27,29,34,35,36,37

3A22,23,25,27,29,34,35,36,37

4A23,25,27,29,34,35,36,37

5A22,23,25,27,29,34,35,36,37

6A22,23,25,27,29,34,35,36,37

7A22,23,25,27,29,34,35,36,37

8A22,23,25,27,29,34,35,36,37

9A22,23,25,27,29,34,35,36,37

10A22,23,25,27,29,34,35,36,37

11B22,23,25,27,29,34,35,36,37

12B22,23,25,27,29,34,35,36,37

13B22,23,25,27,29,34,35,36,37

14B22,23,25,27,29,34,35,36,37

15B22,23,25,27,29,34,35,36,37,39

16B22,23,25,27,29,34,35,36,37

17B22,23,25,27,29,34,35,36,37,30,39

18B22,23,25,27,29,34,35,36,37

19B22,23,25,27,29,34,35,36,37

20B22,23,25,27,29,34,35,37

從表4可以看出:

1.每次取出一個學(xué)習(xí)樣本,以其余學(xué)習(xí)樣本作訓(xùn)練集,用分類模型對該學(xué)習(xí)樣本的預(yù)報(bào)

的成功率是100%.

2.每次取出一個學(xué)習(xí)樣本,以其余學(xué)習(xí)樣本作訓(xùn)練集,用分類模型對未知類別的第21?40

個樣本進(jìn)行預(yù)報(bào),其結(jié)果有以下特點(diǎn):

(1)除分別取出4、15、17,20的預(yù)報(bào)結(jié)果不同外,分別取出其余16中一個,預(yù)

報(bào)結(jié)果均為:22,23,25,27,29,34,35,36,37,占80%.

(2)分別取出4、15、20的預(yù)報(bào)結(jié)果,與(1)的結(jié)果相比,只有一個樣本的差異,

占15%.

(3)取出17的預(yù)報(bào)結(jié)果,與(1)的結(jié)果相比,有兩個樣本的差異,占5%.

第一種結(jié)果和第二種結(jié)果非常接近,合計(jì)占總數(shù)的95%.只有第三組的這一個結(jié)果有較

大差異,占總數(shù)的5%.

由以上檢驗(yàn)得出結(jié)論:所建立的分類數(shù)學(xué)模型分類效果很好.

(四)未知樣本的預(yù)報(bào)

現(xiàn)在用前面建立的數(shù)學(xué)模型對題目所給的未知類型的20個人工序列和182個自然序列進(jìn)

行預(yù)報(bào).(程序見附錄三)

結(jié)果為:

1)20個人工序列的類別

A類:22,23,25,27,29,34,35,36,37

B類:21、24、26、28、30、31、32、33、38、39、40

2)182個自然序列的類別

A類:(共142個)2,3,5,6,7,9,11,12,13,14,15,16,17,18,19,20,

21,22,23,24,25,26,28,30,31,33,34,35,36,37,38,39,40,42,44,

45,46,47,49,50,51,52,53,55,56,57,58,59,60,61,62,64,65,66,

67,68,69,71,73,74,77,78,79,80,82,83,84,85,87,88,89,91,93,

94,95,96,97,98,99,100,101,103,104,105,106,107,108,109,111,112,

113,114,115,117,118,120,121,122,123,124,125,127,128,129,130,

132,133,134,135,136,137,138,139,140,141,142,143,145,146,147,

148,149,151,152,153,154,155,156,158,167,168,171,172,173,174,

175,176,177,178,179,180,181

B類:(共40個)1,4,8,10,27,29,32,41,43,48,54,63,70,72,75,76,

81,86,90,92,102,110,116,119,126,131,144,150,157,159,160,161,

162,163,164,165,166,169,170,182

四、模型的優(yōu)缺點(diǎn)分析

優(yōu)點(diǎn):

1.針對'“有人管理分類”問題,成功地建立解決這類難題的數(shù)學(xué)模型,并可立即運(yùn)用

到實(shí)踐中去.

2.僅用4個特征參數(shù)即圓滿解決了較為復(fù)雜的分類問題.而且模型假設(shè)條件少,因而能

準(zhǔn)確地反映實(shí)際情況,可靠性高.

3.采用模塊化分析,逐漸深入,提高了準(zhǔn)確性.

4.突出特征,假設(shè)合理,避免了在一些細(xì)節(jié)問題上的糾纏.

缺點(diǎn):

由于只考慮了DNA樣本序列中1字符串、2字符串、3字符串出現(xiàn)的頻率作為特征,

DNA序列的分類不一定與實(shí)際情況完全相符.(可以由科學(xué)家用物理的或化學(xué)的方法測定,

作為補(bǔ)充).

五、模型的改進(jìn)方向及推廣

模型的改進(jìn):因?yàn)槟P蜎]考慮DNA序列的實(shí)際特性,當(dāng)序列變得很多很長很復(fù)雜時,分

類的準(zhǔn)確性會降低而不可用,因此應(yīng)增加對DNA序列的生物特性的考慮.

模型的推廣:該模型對一般的“有人管理分類"問題的求解有重要意義.對研究DNA序

列的規(guī)律性和結(jié)構(gòu)提供了一種有效的分類模型.對人類基因組的研究有現(xiàn)實(shí)意義,有利于加

快科研步伐.

六、參考文獻(xiàn)

[1]BrainHayes(M)-ThelnventionoftheGeneticCode.Americanscientist——ComputingScience,

Jan.-Feb.,1998

[2]蕭樹鐵主編.數(shù)學(xué)實(shí)驗(yàn).北京:高等教育出版社,1999

[3]復(fù)旦大學(xué).概率論第二冊一數(shù)理統(tǒng)計(jì).北京:高等教育出版社,1985

[4]WiliiamF.Lucas主編.生命科學(xué)模型。長沙:國防科技大學(xué)出版社,1996

[5]徐光輝主編.運(yùn)籌學(xué)基礎(chǔ)手冊.北京:科學(xué)出版社,1999

[6]姜啟源主編.數(shù)學(xué)模型.北京:高等教育出版社,1993

七、附錄

附錄一1個字符出現(xiàn)頻率的計(jì)算程序]

CHARACTER*121LINE(40)

integera,c,t,g,at

READ*JJNE

D020II=1,40

iu=ii+20

A=0

DO10I=l,121

IF(LINE?/D?EQ.'a')THEN

A=A+1

elseif(line?(I:I).eq.,c')then

c=c+l

elseif(line0i)(I:I).eq.,t)then

t=t+l

elseif(line(ii)(I:I).eq.,g')then

ENDIF

10continue

at=a+t

aa=a/actg*100.

cc=c/actg*100.

tt=t/actg*100.

gg=g/actg*100.

aatt=at/actg*l00.

open(5,file=*tl.dat*,status=*old,)

write(5,l)aa,cc,tt,gg

1fbrmat(lx,4£7.2)

20CONTINUE

END

附錄二基本特征量的提取程序及結(jié)果

d=[27.4319.4736.2816.8163.72;

28.8524.0422.1225.0050.96;

17.6525.4918.6338.2436.27;

20.8719.1340.8719.1361.74;

24.7622.8621.9030.4846.67;

21.9321.0538.6018.4260.53;

23.0820.1923.0833.6546.15;

25.6414.5344.4415.3870.09;

14.8521.7818.8144.5533.66;

28.9724.3025.2321.5054.21;

24.1117.8635.7122.3259.82;

17.4322.9433.0326.6150.46;

27.0318.9233.3320.7260.36;

23.5323.5316.6736.2740.20;

24.27213620.3933.9844.66;

22.8630.4820.9525.7143.81;

213625.2420.3933.0141.75;

22.2217.0943.5917.0965.81;

27.3628.3023.5820.7550.94;

19.8319.8343.1017.2462.93];

dd=[5.314.427.968.859.736.191.7718.586.194.424.424.426.194.424.421.77;

7.699.623.857.699.623.85.966.732.881.927.6911.547.698.652.884.81;

2.943.925.884.903.922.941.969.80.001.9612.759.8010.78.984.9021.57;

1.744.353.4811.3013.041.742.6122.612.619.574.352.613.484.358.702.61;

6.673.813.819.525.711.904.769.527.624.767.622.864.763.819.5212.38;

3.513.515.269.657.894.391.7524.567.896.141.754.392.632.6311.401.75;

5.774.814.817.696.732.882.8810.582.882.887.696.737.694.814.8115.38;

3.425.139.406.8411.975.133.4223.932.566.842.562.567.693.421.712.56;

1.981.983.966.933.962.972.978.911.98.998.918.916.934.957.9224.75;

9.355.612.8010.287.485.615.616.548.417.482.805.613.748.419.35.00;

2.685.364.4611.6115.181.79.8916.963.576.253.574.462.687.147.145.36;

5.502.752.756.426.427.344.5913.764.595.506.426.42.9210.096.428.26;

5.417.217.217.2110.811.805.4115.323.604.502.707.217.216.316.31.90;

7.844.90.988.824.90.982.947.842.943.929.806.867.843.926.8617.65;

5.834.853.889.717.773.881.946.803.882.913.889.716.806.808.7411.65;

4.763.811.9012.388.575.71.006.675.713.8110.4810.483.818.579.522.86;

3.882.912.9110.685.83.976.805.835.835.839.713.884.855.8311.6510.68;

3.429.405.983.4210.261.714.2727.355.133.424.273.422.566.841.715.98;

8.495.664.728.494.728.492.836.6011.321.899.435.662.839.434.723.77;

3.457.764.314.3110.34.863.4527.591.726.038.623.454.315.171.726.03];

ddd二口.773.542.65.88.00.007.96.884.422.6517.7010.623.544.424.427.081.773.5413.277.08;

1.921.92.96.96.00.961.92.964.8112.507.6911.548.653.853.856.739.626.737.692.88;

.98.00.005.88.988.822.94.00.002.9410.785.8813.73.004.903.9219.611.968.825.88;

.00.00.00.87.00.8713.041.746.092.6111.3013.043.485.223.488.703.481.7414.787.83;

2.86.00.003.81.953.813.81.003.813.819.529.5212.382.869.523.817.622.867.629.52;

.00.00.882.63.001.7513.16.884.391.7514.049.657.025.264.3911.402.631.7510.536.14;

1.92.00.002.88.964.812.88.001.924.8112.506.7313.461.926.734.8110.583.859.627.69;

2.563.42.00.85.85.8512.82.851.71.8520.512.563.429.405.9811.11.854.2711.973.42;

.00.00.002.972.979.902.97.00.993.966.931.9813.861.982.973.9623.762.978.916.93;

1.87.933.742.80.00.002.80.007.488.419.357.483.7414.9512.15.002.804.677.487.48;

.00.89.00.00.001.798.04.005.364.4615.188.048.934.463.578.044.466.2513.395.36;

2.75.00.922.75.923.674.593.673.671.839.175.503.675.506.427.348.265.5011.019.17;

1.80.90.90.90.00.909.01.003.607.2114.418.117.216.317.214.501.807.2111.714.50;

2.94.00.005.88.006.861.96.003.926.863.929.8013.73.985.882.9410.78.9810.789.80;

2.911.942.911.94.005.831.94.001.949.715.838.7410.681.943.883.888.742.9111.6510.68;

2.86.95.0011.431.901.902.86.004.763.815.718.578.576.679.524.765.712.867.627.62;

1.94.971.944.851.943.881.94.97.976.804.858.7410.682.916.802.919.716.808.747.77;

1.71.851.71.85.852.5616.24.851.71.8516.245.136.845.983.4211.111.715.1311.113.42;

.94.941.89.94.94.941.89.9410.387.555.669.438.498.497.555.666.6011.326.60.94;

.86.86.001.72.86.8617.24.862.591.7215.527.765.173.454.319.485.175.179.485.17];

x=[29.7317.1213.5139.6443.24;

27.0316.2215.3241.4442.34;

27.03如626.3145.0533.33;

42.3410.8128.8318.0271.17;

23.4223.4210.8142.3434.23;

35.1412.6112.6139.6447.75;

35.149.9118.9236.0454.05;

27.9316.2218.9236.9446.85;

20.7220.7215.3243.2436.04;

18.1827.2713.6440.9131.82;;

35.454.5550.0010.0085.45;

32.732.7350.0014.5582.73;

25.4510.0051.8212.7377.27;

30.008.1850.0011.8280.00;

29.09.0064.556.3693.64;

36.368.1846.369.0982.73;

35.4524.5526.3613.6461.82;

29.0911.8250.009.0979.09;

21.8214.5556.367.2778.18;

20.0017.2756.366.3676.36];

xx=p.019.013.608.114.50.904.503.603.603.601.808.1111.712.705.4118.92;

9.917.213.605.412.701.805.415.414.501.80.909.019.914.505.4121.62;

5.4111.713.605.412.701.80.90.905.41.90.9014.4113.51.907.2123.42;

18.925.4111.715.4110.811.805.4110.815.411.80.902.706.314.502.704.50;

6.318.111.807.211.802.702.703.605.414.502.7010.819.91.909.0121.62;

15.322.706.319.913.601.801.805.414.50.00.008.1110.81.908.1119.82;

15321.8010.817.214.502.706.315.41.901.80.906.3113.51.904.5016.22;

8.113.606.319.915.413.602.707.212.703.601.808.1110.811.807.2116.22;

9.01.904.506.31.003.607.214.503.602.702.7011.717.213.6013.5118.02;

6.363.641.826.361.825.452.733.645.453.644.5513.644.553.6413.6418.18;

15.452.7314.552.7316.36.911.8230.00.91.91.911.822.734.55.002.73;

13.64.9110.916.3615.451.821.8230.91.91.91.00.912.737.27.004.55;

6.364.5510.004.5512.731.822.7334.552.732.731.8如823.644.551.822.73;

8.18.9112.737.2713.646.361.8228.182.734.55.00.915.454.55.91.91;

13.64.0012.731.8213.64.002.7348.18.00.00.00.001.823.64.00.91;

16.363.6415.45.9113.644.554.5522.731.825.45.00.914.552.73.001.82;

17.275.4510.911.8210.006364.555.454.557.279.092.733.642.733.643.64;

8.187.2711.821.8215.451.82.9130.913.643.641.822.731.823.64.912.73;

2.732.7313.641.8214.559.09.9131.821.828.181.822.732.732.73.91.91;

6.366.366.36.919.0910.003.6432.732.7313.64.91.001.823.64.00.91];

xxx=[5.41.902.70.905.413.60.901.802.708.114.501.8025.233.603.605.4113.51.003.604.50;

2.702.70.00.003.606.312.70.907.217.216.311.8018.92.906.311.8014.41.003.6010.81;

2.702.702.70.003.606.31.00.904.505.411.80.9029.73.005.414.5022.52.001.802.70;

15.326.31.00.00.00.909.011.806.3110.8112.613.604.501.802.705.411.801.807.216.31;

3.601.802.70.005.417.21.90.004.501.802.703.6020.721.806.314.5019.821.801.807.21;

9.01.90.90.002.705.414.50.002.7013.516.31.0025.23.901.801.8016.22.002.703.60;

9.011.80.00.001.804.504.50.903.6016.228.11.0017.122.701.801.8010.81.906316.31;

2.701.80.90.902.703.602.70.904.509.918.113.6018.92.902.704.5012.61.907.218.11;

5.41.00.901.805.419.011.80.903.606.311.803.6011.712.702.702.7020.721.804.5010.81;

3.64.912.736.363.6410.91.911.823.642.732.73.9117.27.004.554.5517.274.551.827.27;

9.09.91.00.00.00.0024.55.003.646.3633.64.914.551.82.001.82.002.735.452.73;

2.73.91.00.00.00.0019.09.001.828.1837.27.004.554.55.002.73.00.9110.005.45;

.91273.00.00.00.0027.271.8如825.4526.362.734.552.734.555.451.822.735.451.82;

6.365.45.00.001.82.0020.005.452.732.7324.55.001.823.643.648.18.91.919.09.91;

11.82.91.00.001.82.0047.271.82.003.6425.45.00.91.91.00.00.00.002.73.91;

10.002.73.91.00.00.0014.554.555.453.6431.82.91.913.641.826.36.00.007.273.64;

10.91.913.643.64.00.918.182.7312.739.0911.823.643.646.361.8如826.366.361.8如82;

4.554.55.00.00.91.9121.82.914.55.9129.09.003.641.82.9110.912.734.554.55.91;

3.64.911.82.91.91.0025.455.453.64.0021.821.8如823.64.9113.64.912.735.452.73;

2.73.915.45.00.00.0023.6410.006.361.8213.64.001.828.181.8213.64.001.826.36.00];

ffe=[xxxxxx];

ffd=[dddddd];

cx=cov(ffic);

[vx,ex]=eig(cx);

exl=eig(cx);

el=mean(exl)*41;

ex2=exl(38:41,:);

e2=mean(ex2)*7;

e2/el

vxl=[vx(:,38:41)];

s=ffiK*vxl;ss=ffd*vxl;

x=s(l:10,:);

y=s(ll:20,:);

ul=mean(x);u2=mean(y);

ul-u2;

z=8/9*(cov(x)+cov(y));

ux=0.5*(ul-u2)*inv(z);

ul2=0.5*ul+0.5*u2;

u0=ux*ul2.*;

la=O;

fbri=l:10

p?=ux*ss^,:).,;

tx(i)=ux*x^,:).,;

fy@=ux*y(^).,;

ifjp(i)>uO

pbd@=l;

la=la+l;

else

pbd@=2;

end

iftx0>uO

lbx@=l;

else

lbx@=2;

end

iffy(i)>uO

lby@=l;

else

lby@=2;

end

fbm=11:20

p(n)=ux*ss(n,:)*;

ifjp(n)>u0

pbd(n)=l;

la=la+l;

else

pbd(n)=2;

end

tx,fy,p

pbdjbxjby

ans=0.9847

u0=-2.4812

tx=Columns1througjh7

8.24719.707410.87803.86729.38379.76129.2014

Columns8througjil0

6.270011.64895.4181

fy=Columns1throu曲7

-15.2467-15.2121-14.2828-8.0112-13.4839-11.1970-11.2608

Columns8throu^hl0

-15.0827-14.9635-15.2662

p=Columnslthrou@17

-6.5147-3.68690.7514-6.08380.3758-6.78050.1074

Columns8throug}il4

-8.11945.0825-6.1039-7.0908-2.7297-6.07154.1447

Columnsl5throug}i20

4.5919-4.21990.9096-9.2269-8.1303-10.7112

pbd=Columnslthrougjil2

221212121222

Columnsl3throu^i20

lby=2222222222

附錄三對未知序列進(jìn)行分類的運(yùn)算程序

d=[27.4319.4736.2816.8163.72;

28.8524.0422.1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論