湖北省咸寧市2025年高考數(shù)學(xué)試題全真模擬卷_第1頁(yè)
湖北省咸寧市2025年高考數(shù)學(xué)試題全真模擬卷_第2頁(yè)
湖北省咸寧市2025年高考數(shù)學(xué)試題全真模擬卷_第3頁(yè)
湖北省咸寧市2025年高考數(shù)學(xué)試題全真模擬卷_第4頁(yè)
湖北省咸寧市2025年高考數(shù)學(xué)試題全真模擬卷_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北省咸寧市2025年高考數(shù)學(xué)試題全真模擬卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在正方體中,球同時(shí)與以為公共頂點(diǎn)的三個(gè)面相切,球同時(shí)與以為公共頂點(diǎn)的三個(gè)面相切,且兩球相切于點(diǎn).若以為焦點(diǎn),為準(zhǔn)線的拋物線經(jīng)過(guò),設(shè)球的半徑分別為,則()A. B. C. D.2.已知,則的值構(gòu)成的集合是()A. B. C. D.3.已知函數(shù)在上都存在導(dǎo)函數(shù),對(duì)于任意的實(shí)數(shù)都有,當(dāng)時(shí),,若,則實(shí)數(shù)的取值范圍是()A. B. C. D.4.已知復(fù)數(shù)是正實(shí)數(shù),則實(shí)數(shù)的值為()A. B. C. D.5.復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限6.若復(fù)數(shù)滿足,則的虛部為()A.5 B. C. D.-57.函數(shù)的大致圖象是()A. B.C. D.8.函數(shù)(且)的圖象可能為()A. B. C. D.9.已知向量,夾角為,,,則()A.2 B.4 C. D.10.已知函數(shù)(表示不超過(guò)x的最大整數(shù)),若有且僅有3個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是()A. B. C. D.11.已知函數(shù)(其中,,)的圖象關(guān)于點(diǎn)成中心對(duì)稱,且與點(diǎn)相鄰的一個(gè)最低點(diǎn)為,則對(duì)于下列判斷:①直線是函數(shù)圖象的一條對(duì)稱軸;②點(diǎn)是函數(shù)的一個(gè)對(duì)稱中心;③函數(shù)與的圖象的所有交點(diǎn)的橫坐標(biāo)之和為.其中正確的判斷是()A.①② B.①③ C.②③ D.①②③12.若復(fù)數(shù)(為虛數(shù)單位),則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則__________.14.(5分)在平面直角坐標(biāo)系中,過(guò)點(diǎn)作傾斜角為的直線,已知直線與圓相交于兩點(diǎn),則弦的長(zhǎng)等于____________.15.利用等面積法可以推導(dǎo)出在邊長(zhǎng)為a的正三角形內(nèi)任意一點(diǎn)到三邊的距離之和為定值,類比上述結(jié)論,利用等體積法進(jìn)行推導(dǎo),在棱長(zhǎng)為a的正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和也為定值,則這個(gè)定值是______16.某地區(qū)連續(xù)5天的最低氣溫(單位:℃)依次為8,,,0,2,則該組數(shù)據(jù)的標(biāo)準(zhǔn)差為_(kāi)______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C:(a>b>0)的離心率為.且經(jīng)過(guò)點(diǎn)(1,),A,B分別為橢圓C的左、右頂點(diǎn),過(guò)左焦點(diǎn)F的直線l交橢圓C于D,E兩點(diǎn)(其中D在x軸上方).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若△AEF與△BDF的面積之比為1:7,求直線l的方程.18.(12分)設(shè)函數(shù).(1)若恒成立,求整數(shù)的最大值;(2)求證:.19.(12分)已知數(shù)列的前項(xiàng)和為,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)若,,且數(shù)列前項(xiàng)和為,求的取值范圍.20.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為.(Ⅰ)求直線的普通方程及曲線的直角坐標(biāo)方程;(Ⅱ)設(shè)點(diǎn),直線與曲線相交于,,求的值.21.(12分)已知直線:與拋物線切于點(diǎn),直線:過(guò)定點(diǎn)Q,且拋物線上的點(diǎn)到點(diǎn)Q的距離與其到準(zhǔn)線距離之和的最小值為.(1)求拋物線的方程及點(diǎn)的坐標(biāo);(2)設(shè)直線與拋物線交于(異于點(diǎn)P)兩個(gè)不同的點(diǎn)A、B,直線PA,PB的斜率分別為,那么是否存在實(shí)數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.22.(10分)近幾年一種新奇水果深受廣大消費(fèi)者的喜愛(ài),一位農(nóng)戶發(fā)揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經(jīng)濟(jì)效益.根據(jù)資料顯示,產(chǎn)出的新奇水果的箱數(shù)x(單位:十箱)與成本y(單位:千元)的關(guān)系如下:x13412y51.522.58y與x可用回歸方程(其中,為常數(shù))進(jìn)行模擬.(Ⅰ)若該農(nóng)戶產(chǎn)出的該新奇水果的價(jià)格為150元/箱,試預(yù)測(cè)該新奇水果100箱的利潤(rùn)是多少元.|.(Ⅱ)據(jù)統(tǒng)計(jì),10月份的連續(xù)11天中該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的頻率分布直方圖如圖所示.(i)若從箱數(shù)在內(nèi)的天數(shù)中隨機(jī)抽取2天,估計(jì)恰有1天的水果箱數(shù)在內(nèi)的概率;(ⅱ)求這11天該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的平均值.(每組用該組區(qū)間的中點(diǎn)值作代表)參考數(shù)據(jù)與公式:設(shè),則0.541.81.530.45線性回歸直線中,,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

由題先畫(huà)出立體圖,再畫(huà)出平面處的截面圖,由拋物線第一定義可知,點(diǎn)到點(diǎn)的距離即半徑,也即點(diǎn)到面的距離,點(diǎn)到直線的距離即點(diǎn)到面的距離因此球內(nèi)切于正方體,設(shè),兩球球心和公切點(diǎn)都在體對(duì)角線上,通過(guò)幾何關(guān)系可轉(zhuǎn)化出,進(jìn)而求解【詳解】根據(jù)拋物線的定義,點(diǎn)到點(diǎn)的距離與到直線的距離相等,其中點(diǎn)到點(diǎn)的距離即半徑,也即點(diǎn)到面的距離,點(diǎn)到直線的距離即點(diǎn)到面的距離,因此球內(nèi)切于正方體,不妨設(shè),兩個(gè)球心和兩球的切點(diǎn)均在體對(duì)角線上,兩個(gè)球在平面處的截面如圖所示,則,所以.又因?yàn)椋虼?,得,所?故選:D【點(diǎn)睛】本題考查立體圖與平面圖的轉(zhuǎn)化,拋物線幾何性質(zhì)的使用,內(nèi)切球的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化思想,直觀想象與數(shù)學(xué)運(yùn)算的核心素養(yǎng)2、C【解析】

對(duì)分奇數(shù)、偶數(shù)進(jìn)行討論,利用誘導(dǎo)公式化簡(jiǎn)可得.【詳解】為偶數(shù)時(shí),;為奇數(shù)時(shí),,則的值構(gòu)成的集合為.【點(diǎn)睛】本題考查三角式的化簡(jiǎn),誘導(dǎo)公式,分類討論,屬于基本題.3、B【解析】

先構(gòu)造函數(shù),再利用函數(shù)奇偶性與單調(diào)性化簡(jiǎn)不等式,解得結(jié)果.【詳解】令,則當(dāng)時(shí),,又,所以為偶函數(shù),從而等價(jià)于,因此選B.【點(diǎn)睛】本題考查利用函數(shù)奇偶性與單調(diào)性求解不等式,考查綜合分析求解能力,屬中檔題.4、C【解析】

將復(fù)數(shù)化成標(biāo)準(zhǔn)形式,由題意可得實(shí)部大于零,虛部等于零,即可得到答案.【詳解】因?yàn)闉檎龑?shí)數(shù),所以且,解得.故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的基本定義,屬基礎(chǔ)題.5、C【解析】

由復(fù)數(shù)除法求出,寫(xiě)出共軛復(fù)數(shù),寫(xiě)出共軛復(fù)數(shù)對(duì)應(yīng)點(diǎn)坐標(biāo)即得【詳解】解析:,,對(duì)應(yīng)點(diǎn)為,在第三象限.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,共軛復(fù)數(shù)的概念,復(fù)數(shù)的幾何意義.掌握復(fù)數(shù)除法法則是解題關(guān)鍵.6、C【解析】

把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.7、A【解析】

用排除B,C;用排除;可得正確答案.【詳解】解:當(dāng)時(shí),,,所以,故可排除B,C;當(dāng)時(shí),,故可排除D.故選:A.【點(diǎn)睛】本題考查了函數(shù)圖象,屬基礎(chǔ)題.8、D【解析】因?yàn)?,故函?shù)是奇函數(shù),所以排除A,B;取,則,故選D.考點(diǎn):1.函數(shù)的基本性質(zhì);2.函數(shù)的圖象.9、A【解析】

根據(jù)模長(zhǎng)計(jì)算公式和數(shù)量積運(yùn)算,即可容易求得結(jié)果.【詳解】由于,故選:A.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,模長(zhǎng)的求解,屬綜合基礎(chǔ)題.10、A【解析】

根據(jù)[x]的定義先作出函數(shù)f(x)的圖象,利用函數(shù)與方程的關(guān)系轉(zhuǎn)化為f(x)與g(x)=ax有三個(gè)不同的交點(diǎn),利用數(shù)形結(jié)合進(jìn)行求解即可.【詳解】當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,若有且僅有3個(gè)零點(diǎn),則等價(jià)為有且僅有3個(gè)根,即與有三個(gè)不同的交點(diǎn),作出函數(shù)和的圖象如圖,當(dāng)a=1時(shí),與有無(wú)數(shù)多個(gè)交點(diǎn),當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),即,時(shí),與有兩個(gè)交點(diǎn),當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),即時(shí),與有三個(gè)交點(diǎn),要使與有三個(gè)不同的交點(diǎn),則直線處在過(guò)和之間,即,故選:A.【點(diǎn)睛】利用函數(shù)零點(diǎn)的情況求參數(shù)值或取值范圍的方法(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過(guò)解不等式確定參數(shù)的范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域(最值)問(wèn)題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫(huà)出函數(shù)的圖象,然后數(shù)形結(jié)合求解.11、C【解析】分析:根據(jù)最低點(diǎn),判斷A=3,根據(jù)對(duì)稱中心與最低點(diǎn)的橫坐標(biāo)求得周期T,再代入最低點(diǎn)可求得解析式為,依次判斷各選項(xiàng)的正確與否.詳解:因?yàn)闉閷?duì)稱中心,且最低點(diǎn)為,所以A=3,且由所以,將帶入得,所以由此可得①錯(cuò)誤,②正確,③當(dāng)時(shí),,所以與有6個(gè)交點(diǎn),設(shè)各個(gè)交點(diǎn)坐標(biāo)依次為,則,所以③正確所以選C點(diǎn)睛:本題考查了根據(jù)條件求三角函數(shù)的解析式,通過(guò)求得的解析式進(jìn)一步研究函數(shù)的性質(zhì),屬于中檔題.12、B【解析】

根據(jù)復(fù)數(shù)的除法法則計(jì)算,由共軛復(fù)數(shù)的概念寫(xiě)出.【詳解】,,故選:B【點(diǎn)睛】本題主要考查了復(fù)數(shù)的除法計(jì)算,共軛復(fù)數(shù)的概念,屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

解一元二次不等式化簡(jiǎn)集合,再進(jìn)行集合的交運(yùn)算,即可得到答案.【詳解】,,.故答案為:.【點(diǎn)睛】本題考查一元二次不等式的求解、集合的交運(yùn)算,考查運(yùn)算求解能力,屬于基礎(chǔ)題.14、【解析】

方法一:依題意,知直線的方程為,代入圓的方程化簡(jiǎn)得,解得或,從而得或,則.方法二:依題意,知直線的方程為,代入圓的方程化簡(jiǎn)得,設(shè),則,故.方法三:將圓的方程配方得,其半徑,圓心到直線的距離,則.15、【解析】

計(jì)算正四面體的高,并計(jì)算該正四面體的體積,利用等體積法,可得結(jié)果.【詳解】作平面,為的重心如圖則,所以設(shè)正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和為則故答案為:【點(diǎn)睛】本題考查類比推理的應(yīng)用,還考查等體積法,考驗(yàn)理解能力以及計(jì)算能力,屬基礎(chǔ)題.16、【解析】

先求出這組數(shù)據(jù)的平均數(shù),再求出這組數(shù)據(jù)的方差,由此能求出該組數(shù)據(jù)的標(biāo)準(zhǔn)差.【詳解】解:某地區(qū)連續(xù)5天的最低氣溫(單位:依次為8,,,0,2,平均數(shù)為:,該組數(shù)據(jù)的方差為:,該組數(shù)據(jù)的標(biāo)準(zhǔn)差為1.故答案為:1.【點(diǎn)睛】本題考查一組數(shù)據(jù)據(jù)的標(biāo)準(zhǔn)差的求法,考查平均數(shù)、方差、標(biāo)準(zhǔn)差的定義等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2).【解析】

(1)利用離心率和橢圓經(jīng)過(guò)的點(diǎn)建立方程組,求解即可.(2)把面積之比轉(zhuǎn)化為縱坐標(biāo)之間的關(guān)系,聯(lián)立方程結(jié)合韋達(dá)定理可求.【詳解】解:(1)設(shè)焦距為2c,由題意知:;解得,所以橢圓的方程為.(2)由(1)知:F(﹣1,0),設(shè)l:,D(,),E(,),<0<①,,,②;③;由①②得:,,代入③得:,又,故,因此,直線l的方程為.【點(diǎn)睛】本題主要考查橢圓方程的求解及橢圓中的面積問(wèn)題,橢圓方程一般利用待定系數(shù)法,建立方程組進(jìn)行求解,面積問(wèn)題的合理轉(zhuǎn)化是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).18、(1)整數(shù)的最大值為;(2)見(jiàn)解析.【解析】

(1)將不等式變形為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性并確定其最值,從而得到正整數(shù)的最大值;(2)根據(jù)(1)的結(jié)論得到,利用不等式的基本性質(zhì)可證得結(jié)論.【詳解】(1)由得,令,,令,對(duì)恒成立,所以,函數(shù)在上單調(diào)遞增,,,,,故存在使得,即,從而當(dāng)時(shí),有,,所以,函數(shù)在上單調(diào)遞增;當(dāng)時(shí),有,,所以,函數(shù)在上單調(diào)遞減.所以,,,因此,整數(shù)的最大值為;(2)由(1)知恒成立,,令則,,,,,上述等式全部相加得,所以,,因此,【點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性、最值中的應(yīng)用,以及放縮法證明不等式的技巧,屬于難題.19、(1)(2)【解析】

(1)由,可求,然后由時(shí),可得,根據(jù)等比數(shù)列的通項(xiàng)可求(2)由,而,利用裂項(xiàng)相消法可求.【詳解】(1)當(dāng)時(shí),,解得,當(dāng)時(shí),①②②①得,即,數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列,;(2)∴,∴,,.【點(diǎn)睛】本題考查遞推公式在數(shù)列的通項(xiàng)求解中的應(yīng)用,等比數(shù)列的通項(xiàng)公式、裂項(xiàng)求和方法,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力.20、(Ⅰ),;(Ⅱ).【解析】

(Ⅰ)由(為參數(shù))直接消去參數(shù),可得直線的普通方程,把兩邊同時(shí)乘以,結(jié)合,可得曲線的直角坐標(biāo)方程;(Ⅱ)把代入,化為關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系及參數(shù)的幾何意義求解.【詳解】解:(Ⅰ)由(為參數(shù)),消去參數(shù),可得.∵,∴,即.∴曲線的直角坐標(biāo)方程為;(Ⅱ)把代入,得.設(shè),兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為,則,.不妨設(shè),,∴.【點(diǎn)睛】本題考查簡(jiǎn)單曲線的極坐標(biāo)方程,考查參數(shù)方程化普通方程,明確直線參數(shù)方程中參數(shù)的幾何意義是解題的關(guān)鍵,是中檔題.21、(1),(1,2);(2)存在,【解析】

(1)由直線恒過(guò)點(diǎn)點(diǎn)及拋物線C上的點(diǎn)到點(diǎn)Q的距離與到準(zhǔn)線的距離之和的最小值為,求出拋物線的方程,再由直線與拋物線相切,即可求得切點(diǎn)的坐標(biāo);(2)直線與拋物線方程聯(lián)立,利用根與系數(shù)的關(guān)系,求得直線PA,PB的斜率,求出斜率之和為定值,即存在實(shí)數(shù)使得斜率之和為定值.【詳解】(1)由題意,直線變?yōu)?x+1-m(2y+1)=0,所以定點(diǎn)Q的坐標(biāo)為拋物線的焦點(diǎn)坐標(biāo),由拋物線C上的點(diǎn)到點(diǎn)Q的距離與到其焦點(diǎn)F的距離之和的最小值為,可得,解得或(舍去),故拋物線C的方程為又由消去y得,因?yàn)橹本€與拋物線C相切,所以,解得,此時(shí),所以點(diǎn)P坐標(biāo)為(1,2)(2)設(shè)存在滿足條件的實(shí)數(shù),點(diǎn),聯(lián)立,消去x得,則,依題意,可得,解得m<-1或,由(1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論