




下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、.開(kāi)一數(shù)學(xué)組教研材料 (裂項(xiàng)相消法求和之再研究 ) 張明剛一項(xiàng)拆成兩項(xiàng),消掉中間所有項(xiàng),剩下首尾對(duì)稱項(xiàng)基本類(lèi)型:1.形如型。如;2.形如an型;3.4.5.6.形如an型7.形如an型;8.9.形如an型;10.11.12.13.14.15.利用兩角差的正切公式進(jìn)行裂項(xiàng)把兩角差的正切公式進(jìn)行恒等變形,例如 可以另一方面,利用,得16 利用對(duì)數(shù)的運(yùn)算性質(zhì)進(jìn)行裂項(xiàng)對(duì)數(shù)運(yùn)算有性質(zhì),有些試題則可以構(gòu)造這種形式進(jìn)行裂項(xiàng).17 利用排列數(shù)或組合數(shù)的性質(zhì)進(jìn)行裂項(xiàng)排列數(shù)有性質(zhì),組合數(shù)有這樣的性質(zhì),都可以作為裂項(xiàng)的依據(jù).例7 求和:分析 直接利用可得結(jié)果是.18.求和:.有,從而.裂項(xiàng)相消法求和之再研究一項(xiàng)拆成
2、兩項(xiàng),消掉中間所有項(xiàng),剩下首尾對(duì)稱項(xiàng) 一、多項(xiàng)式數(shù)列求和。(1)用裂項(xiàng)相消法求等差數(shù)列前n項(xiàng)和。即形如的數(shù)列求前n項(xiàng)和此類(lèi)型可設(shè)左邊化簡(jiǎn)對(duì)應(yīng)系數(shù)相等求出A,B。例1:已知數(shù)列的通項(xiàng)公式為,求它的前n項(xiàng)和。(2)用裂項(xiàng)相消法求多項(xiàng)式數(shù)列前n項(xiàng)和。即形如的數(shù)列求前n項(xiàng)和。此類(lèi)型可上邊化簡(jiǎn)對(duì)應(yīng)系數(shù)相等得到一個(gè)含有m元一次方程組。說(shuō)明:解這個(gè)方程組采用代入法,不難求。系數(shù)化簡(jiǎn)可以用二項(xiàng)式定理,這里不解釋。解出。再裂項(xiàng)相消法用易知例2:已知數(shù)列的通項(xiàng)公式為,求它的前n項(xiàng)和。二、二、多項(xiàng)式數(shù)列與等比數(shù)列乘積構(gòu)成的數(shù)列。(1)用裂項(xiàng)相消法求等比數(shù)列前n項(xiàng)和。即形如的數(shù)列求前n項(xiàng)和。這里不妨設(shè)。(時(shí)為常數(shù)列,
3、前n項(xiàng)和顯然為)此類(lèi)型可設(shè),則有,從而有。再用裂項(xiàng)相消法求得例3:已知數(shù)列的通項(xiàng)公式為,求它的前n項(xiàng)和。解:設(shè),則有,從而有,故。(2)用裂項(xiàng)相消法求等差數(shù)列與等比數(shù)列乘積構(gòu)成的數(shù)列前n項(xiàng)和。即形如的數(shù)列求前n項(xiàng)和。此類(lèi)型通常的方法是乘公比錯(cuò)位錯(cuò)位相減法,其實(shí)也可以用裂項(xiàng)相消法。這里依然不妨設(shè),(時(shí)為等差數(shù)列,不再贅述。)可設(shè),則有,從而得到方程組,繼而解出A,B。再用裂項(xiàng)相消法求得例4:已知數(shù)列的通項(xiàng)公式為,求它的前n項(xiàng)和。解:設(shè),則有,從而得到方程組,解得。(3)用裂項(xiàng)相消法求多項(xiàng)式數(shù)列與等比數(shù)列乘積構(gòu)成的數(shù)列前n項(xiàng)和。即形如的數(shù)列求前n項(xiàng)和。此類(lèi)型有一個(gè)采用m次錯(cuò)位相減法的方法求出,但是
4、當(dāng)次數(shù)較高時(shí)錯(cuò)位相減法的優(yōu)勢(shì)就完全失去了。同樣這里依然不妨設(shè),(時(shí)為多項(xiàng)式數(shù)列,不再贅述。)下面介紹錯(cuò)位相減法的方法:設(shè)。先對(duì)上式化簡(jiǎn)成的形式,其中是用來(lái)表示的一次式子。同樣讓對(duì)應(yīng)系數(shù)相等得到一個(gè)m元一次方程組,用代入法可以解出再用用裂項(xiàng)相消法求得。例5:已知數(shù)列的通項(xiàng)公式為,求它的前n項(xiàng)和。解:設(shè),則有從而得到,解得,所以事實(shí)上裂項(xiàng)求和適合用于所有能將化成形式的所有數(shù)列,與存在形式上相似性,從而利用待定系數(shù)法的方式得到的表達(dá)式,最終可以得到。這里部分可用倒敘相加法的數(shù)列不能使用此法是因?yàn)樗鼪](méi)有一個(gè)統(tǒng)一形式不帶省略號(hào)的前n項(xiàng)和公式。例如調(diào)和數(shù)列也不能用此法,事實(shí)上調(diào)和數(shù)列是不可求前n項(xiàng)和的數(shù)列
5、。四、結(jié)論。 從上面的論斷不難得出裂項(xiàng)相消法,適合所有可求前n項(xiàng)和的數(shù)列。不愧為數(shù)列求前n項(xiàng)和的萬(wàn)能方法。不過(guò)值得肯定的是有部分?jǐn)?shù)列利用裂項(xiàng)相消法,不易找出它的裂項(xiàng)方法,尤其是與指數(shù)函數(shù),對(duì)數(shù)函數(shù),三角函數(shù)這些比較高級(jí)的基本初等函數(shù)相關(guān)的初等函數(shù)。對(duì)于前兩個(gè)大點(diǎn)得出的結(jié)論,我們當(dāng)然也可以使用待定系數(shù)法來(lái)求,只是不要忘記它們都是用裂項(xiàng)相消法證明出來(lái)的結(jié)論。保留原來(lái)的參數(shù)得到結(jié)論也可以使用,從而直接得出待定參數(shù)的值,但對(duì)記性的要求很高,這里就不再啰嗦。例6:已知數(shù)列的通項(xiàng)公式為,求它的前n項(xiàng)和。解:設(shè)則所以,解得,所以例7:已知數(shù)列的通項(xiàng)公式為,求它的前n項(xiàng)和。解:例8:已知數(shù)列的通項(xiàng)公式為,求它的前n項(xiàng)和,。解:,作業(yè):1、請(qǐng)用裂項(xiàng)相消法求下列各數(shù)列的和.(1)已知數(shù)列的通項(xiàng)公式為,求它的前n項(xiàng)和。(2)已知數(shù)列的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 淮安公務(wù)員試題及答案
- 肥城醫(yī)院考試試題及答案
- 6、技術(shù)-抹灰工程試題(105題含答案中南)
- 2025年地理高考復(fù)習(xí) 專(zhuān)題03 大氣運(yùn)動(dòng)(講義)(原卷版)
- 2025至2031年中國(guó)無(wú)接頭鋼繩環(huán)形索具行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025貴州榕晟體育文化產(chǎn)業(yè)有限責(zé)任公司招聘2人筆試參考題庫(kù)附帶答案詳解
- 2025福建武夷云無(wú)人機(jī)有限公司人員招聘6人筆試參考題庫(kù)附帶答案詳解
- 2025-2030中國(guó)休閑服裝面料行業(yè)市場(chǎng)全景調(diào)研及投資價(jià)值評(píng)估咨詢報(bào)告
- 2025裝修施工合同范本
- 2025-2030中國(guó)動(dòng)物提取物行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略研究報(bào)告
- 走近湖湘紅色人物智慧樹(shù)知到答案2024年湖南工商大學(xué)
- DB51-T 5071-2011 蒸壓加氣混凝土砌塊墻體自保溫工程技術(shù)規(guī)程
- Elephant'sfriends繪本閱讀(課件)人教PEP版英語(yǔ)三年級(jí)上冊(cè)
- AQ6111-2023個(gè)體防護(hù)裝備安全管理規(guī)范
- 多發(fā)性骨髓瘤腎損傷診治指南(2024版)
- 2024年中考數(shù)學(xué)反比例函數(shù)-選擇題(壓軸)(試題)
- 2024-2030年中國(guó)吸脂器行業(yè)現(xiàn)狀動(dòng)態(tài)與需求趨勢(shì)預(yù)測(cè)研究報(bào)告
- 【渠道視角下伊利股份營(yíng)運(yùn)資金管理存在的問(wèn)題及優(yōu)化建議探析9000字(論文)】
- 患者呼吸心跳驟停的應(yīng)急預(yù)案
- (正式版)JBT 9229-2024 剪叉式升降工作平臺(tái)
評(píng)論
0/150
提交評(píng)論