高中數(shù)學(xué)重點(diǎn)知識(shí)與結(jié)論分類解析一_第1頁(yè)
高中數(shù)學(xué)重點(diǎn)知識(shí)與結(jié)論分類解析一_第2頁(yè)
高中數(shù)學(xué)重點(diǎn)知識(shí)與結(jié)論分類解析一_第3頁(yè)
高中數(shù)學(xué)重點(diǎn)知識(shí)與結(jié)論分類解析一_第4頁(yè)
高中數(shù)學(xué)重點(diǎn)知識(shí)與結(jié)論分類解析一_第5頁(yè)
已閱讀5頁(yè),還剩5頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、高中數(shù)學(xué)重點(diǎn)知識(shí)與結(jié)論分類解析 一、集合與簡(jiǎn)易邏輯 1集合的元素具有確定性、無序性和互異性 2對(duì)集合 , 時(shí),必須注意到“極端”情況: 或 ;求集合的子集時(shí)是否注意到 是任何集合的子集、 是任何非空集合的真子集 3對(duì)于含有 個(gè)元素的有限集合 ,其子集、真子集、非空子集、非空真子集的個(gè)數(shù)依次為 4“交的補(bǔ)等于補(bǔ)的并,即 ”;“并的補(bǔ)等于補(bǔ)的交,即 ” 5判斷命題的真假 關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不或即且,不且即或” 6“或命題”的真假特點(diǎn)是“一真即真,要假全假”;“且命題”的真假特點(diǎn)是“一假即假,要真全真”;“非命題”的真假特點(diǎn)是“一真一假” 7四種命題中“逆者交換也”、“否者否定也” 原

2、命題等價(jià)于逆否命題,但原命題與逆命題、否命題都不等價(jià)反證法分為三步:假設(shè)、推矛、得果 L注意:命題的否定是“命題的非命題,也就是條件不變,僅否定結(jié)論所得命題”,但否命題是“既否定原命題的條件作為條件,又否定原命題的結(jié)論作為結(jié)論的所得命題” 8充要條件 二、函 數(shù) 1指數(shù)式、對(duì)數(shù)式, 2(1)映射是“全部射出加一箭一雕”;映射中第一個(gè)集合 中的元素必有像,但第二個(gè)集合 中的元素不一定有原像( 中元素的像有且僅有下一個(gè),但 中元素的原像可能沒有,也可任意個(gè));函數(shù)是“非空數(shù)集上的映射”,其中“值域是映射中像集 的子集” (2)函數(shù)圖像與 軸垂線至多一個(gè)公共點(diǎn),但與 軸垂線的公共點(diǎn)可能沒有,也可任意

3、個(gè) (3)函數(shù)圖像一定是坐標(biāo)系中的曲線,但坐標(biāo)系中的曲線不一定能成為函數(shù)圖像 3單調(diào)性和奇偶性 (1)奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上若有單調(diào)性,則其單調(diào)性完全相同 偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上若有單調(diào)性,則其單調(diào)性恰恰相反 注意:(1)確定函數(shù)的奇偶性,務(wù)必先判定函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱確定函數(shù)奇偶性的常用方法有:定義法、圖像法等等對(duì)于偶函數(shù)而言有: (2)若奇函數(shù)定義域中有0,則必有 即 的定義域時(shí), 是 為奇函數(shù)的必要非充分條件 (3)確定函數(shù)的單調(diào)性或單調(diào)區(qū)間,在解答題中常用:定義法(取值、作差、鑒定)、導(dǎo)數(shù)法;在選擇、填空題中還有:數(shù)形結(jié)合法(圖像法)、特殊值法等等 (4)既奇又偶函數(shù)

4、有無窮多個(gè)( ,定義域是關(guān)于原點(diǎn)對(duì)稱的任意一個(gè)數(shù)集) (7)復(fù)合函數(shù)的單調(diào)性特點(diǎn)是:“同性得增,增必同性;異性得減,減必異性” 復(fù)合函數(shù)的奇偶性特點(diǎn)是:“內(nèi)偶則偶,內(nèi)奇同外”復(fù)合函數(shù)要考慮定義域的變化。(即復(fù)合有意義) 4對(duì)稱性與周期性(以下結(jié)論要消化吸收,不可強(qiáng)記) (1)函數(shù) 與函數(shù) 的圖像關(guān)于直線 ( 軸)對(duì)稱 推廣一:如果函數(shù) 對(duì)于一切 ,都有 成立,那么 的圖像關(guān)于直線 (由“ 和的一半 確定”)對(duì)稱 推廣二:函數(shù) , 的圖像關(guān)于直線 (由 確定)對(duì)稱 (2)函數(shù) 與函數(shù) 的圖像關(guān)于直線 ( 軸)對(duì)稱 (3)函數(shù) 與函數(shù) 的圖像關(guān)于坐標(biāo)原點(diǎn)中心對(duì)稱 推廣:曲線 關(guān)于直線 的對(duì)稱曲線是

5、 ; 曲線 關(guān)于直線 的對(duì)稱曲線是 (5)類比“三角函數(shù)圖像”得:若 圖像有兩條對(duì)稱軸 ,則 必是周期函數(shù),且一周期為 如果 是R上的周期函數(shù),且一個(gè)周期為 ,那么 特別:若 恒成立,則 若 恒成立,則 若 恒成立,則 三、數(shù) 列 1數(shù)列的通項(xiàng)、數(shù)列項(xiàng)的項(xiàng)數(shù),遞推公式與遞推數(shù)列,數(shù)列的通項(xiàng)與數(shù)列的前 項(xiàng)和公式的關(guān)系: (必要時(shí)請(qǐng)分類討論) 注意: ; 2等差數(shù)列 中: (1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性 (2) ; (3) 、 也成等差數(shù)列 (4)兩等差數(shù)列對(duì)應(yīng)項(xiàng)和(差)組成的新數(shù)列仍成等差數(shù)列 (5) 仍成等差數(shù)列 (8)“首正”的遞等差數(shù)列中,前 項(xiàng)和的最大值是所有非負(fù)項(xiàng)之和; “

6、首負(fù)”的遞增等差數(shù)列中,前 項(xiàng)和的最小值是所有非正項(xiàng)之和; (9)有限等差數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和”“奇數(shù)項(xiàng)和”總項(xiàng)數(shù)的一半與其公差的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和”“偶數(shù)項(xiàng)和”此數(shù)列的中項(xiàng) (10)兩數(shù)的等差中項(xiàng)惟一存在在遇到三數(shù)或四數(shù)成等差數(shù)列時(shí),??紤]選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解 (11)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項(xiàng)法、通項(xiàng)法、和式法、圖像法(也就是說數(shù)列是等差數(shù)列的充要條件主要有這五種形式) 3等比數(shù)列 中: (1)等比數(shù)列的符號(hào)特征(全正或全負(fù)或一正一負(fù)),等比數(shù)列的首項(xiàng)、公比與等比數(shù)列的

7、單調(diào)性 (3) 、 、 成等比數(shù)列; 成等比數(shù)列 成等比數(shù)列 (4)兩等比數(shù)列對(duì)應(yīng)項(xiàng)積(商)組成的新數(shù)列仍成等比數(shù)列 (8)“首大于1”的正值遞減等比數(shù)列中,前 項(xiàng)積的最大值是所有大于或等于1的項(xiàng)的積;“首小于1”的正值遞增等比數(shù)列中,前 項(xiàng)積的最小值是所有小于或等于1的項(xiàng)的積; (9)有限等比數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和”“奇數(shù)項(xiàng)和”與“公比”的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和”“首項(xiàng)”加上“公比”與“偶數(shù)項(xiàng)和”積的和 (10)并非任何兩數(shù)總有等比中項(xiàng)僅當(dāng)實(shí)數(shù) 同號(hào)時(shí),實(shí)數(shù) 存在等比中項(xiàng)對(duì)同號(hào)兩實(shí)數(shù) 的等比中項(xiàng)不僅存在

8、,而且有一對(duì) 也就是說,兩實(shí)數(shù)要么沒有等比中項(xiàng)(非同號(hào)時(shí)),如果有,必有一對(duì)(同號(hào)時(shí))在遇到三數(shù)或四數(shù)成等差數(shù)列時(shí),常優(yōu)先考慮選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解 (11)判定數(shù)列是否是等比數(shù)列的方法主要有:定義法、中項(xiàng)法、通項(xiàng)法、和式法(也就是說數(shù)列是等比數(shù)列的充要條件主要有這四種形式) 4等差數(shù)列與等比數(shù)列的聯(lián)系 (1)如果數(shù)列 成等差數(shù)列,那么數(shù)列 ( 總有意義)必成等比數(shù)列 (2)如果數(shù)列 成等比數(shù)列,那么數(shù)列 必成等差數(shù)列 (3)如果數(shù)列 既成等差數(shù)列又成等比數(shù)列,那么數(shù)列 是非零常數(shù)數(shù)列;但數(shù)列 是常數(shù)數(shù)列僅是數(shù)列既成等差數(shù)列又成等比數(shù)列的必要非充分條件 (4)如果兩等差數(shù)列有公共項(xiàng),那么由他

9、們的公共項(xiàng)順次組成的新數(shù)列也是等差數(shù)列,且新等差數(shù)列的公差是原兩等差數(shù)列公差的最小公倍數(shù) 如果一個(gè)等差數(shù)列與一個(gè)等比數(shù)列有公共項(xiàng)順次組成新數(shù)列,那么常選用“由特殊到一般的方法”進(jìn)行研討,且以其等比數(shù)列的項(xiàng)為主,探求等比數(shù)列中那些項(xiàng)是他們的公共項(xiàng),并構(gòu)成新的數(shù)列 注意:(1)公共項(xiàng)僅是公共的項(xiàng),其項(xiàng)數(shù)不一定相同,即研究 但也有少數(shù)問題中研究 ,這時(shí)既要求項(xiàng)相同,也要求項(xiàng)數(shù)相同(2)三(四)個(gè)數(shù)成等差(比)的中項(xiàng)轉(zhuǎn)化和通項(xiàng)轉(zhuǎn)化法 5數(shù)列求和的常用方法: (1)公式法:等差數(shù)列求和公式(三種形式), 等比數(shù)列求和公式(三種形式), (2)分組求和法:在直接運(yùn)用公式法求和有困難時(shí),常將“和式”中“同類

10、項(xiàng)”先合并在一起,再運(yùn)用公式法求和 (3)倒序相加法:在數(shù)列求和中,若和式中到首尾距離相等的兩項(xiàng)和有其共性或數(shù)列的通項(xiàng)與組合數(shù)相關(guān)聯(lián),則??煽紤]選用倒序相加法,發(fā)揮其共性的作用求和(這也是等差數(shù)列前 和公式的推導(dǎo)方法) (4)錯(cuò)位相減法:如果數(shù)列的通項(xiàng)是由一個(gè)等差數(shù)列的通項(xiàng)與一個(gè)等比數(shù)列的通項(xiàng)相乘構(gòu)成,那么常選用錯(cuò)位相減法,將其和轉(zhuǎn)化為“一個(gè)新的的等比數(shù)列的和”求解(注意:一般錯(cuò)位相減后,其中“新等比數(shù)列的項(xiàng)數(shù)是原數(shù)列的項(xiàng)數(shù)減一的差”?。ㄟ@也是等比數(shù)列前 和公式的推導(dǎo)方法之一) (5)裂項(xiàng)相消法:如果數(shù)列的通項(xiàng)可“分裂成兩項(xiàng)差”的形式,且相鄰項(xiàng)分裂后相關(guān)聯(lián),那么常選用裂項(xiàng)相消法求和常用裂項(xiàng)形

11、式有: 運(yùn)用等比數(shù)列求和公式,務(wù)必檢查其公比與1的關(guān)系,必要時(shí)分類討論L特別聲明: (6)通項(xiàng)轉(zhuǎn)換法。 四、三角函數(shù) 1 終邊與 終邊相同( 的終邊在 終邊所在射線上) 終邊與 終邊共線( 的終邊在 終邊所在直線上) 終邊與 終邊關(guān)于 軸對(duì)稱 終邊與 終邊關(guān)于 軸對(duì)稱 終邊與 終邊關(guān)于原點(diǎn)對(duì)稱 一般地: 終邊與 終邊關(guān)于角 的終邊對(duì)稱 與 的終邊關(guān)系由“兩等分各象限、一二三四”確定 2弧長(zhǎng)公式: ,扇形面積公式: ,1弧度(1rad) 3三角函數(shù)符號(hào)特征是:一是全正、二正弦正、三是切正、四余弦正 注意: , 4三角函數(shù)線的特征是:正弦線“站在 軸上(起點(diǎn)在 軸上)”、余弦線“躺在 軸上(起點(diǎn)是

12、原點(diǎn))”、正切線“站在點(diǎn) 處(起點(diǎn)是 )”務(wù)必重視“三角函數(shù)值的大小與單位圓上相應(yīng)點(diǎn)的坐標(biāo)之間的關(guān)系,正弦 縱坐標(biāo)、余弦 橫坐標(biāo)、正切 縱坐標(biāo)除以橫坐標(biāo)之商”;務(wù)必記?。?jiǎn)挝粓A中角終邊的變化與 值的大小變化的關(guān)系 為銳角 5三角函數(shù)同角關(guān)系中,平方關(guān)系的運(yùn)用中,務(wù)必重視“根據(jù)已知角的范圍和三角函數(shù)的取值,精確確定角的范圍,并進(jìn)行定號(hào)”; 6三角函數(shù)誘導(dǎo)公式的本質(zhì)是:奇變偶不變,符號(hào)看象限 7三角函數(shù)變換主要是:角、函數(shù)名、次數(shù)、系數(shù)(常值)的變換,其核心是“角的變換”! 角的變換主要有:已知角與特殊角的變換、已知角與目標(biāo)角的變換、角與其倍角的變換、兩角與其和差角的變換 常值變換主要指“1”的變

13、換: 等 三角式變換主要有:三角函數(shù)名互化(切割化弦)、三角函數(shù)次數(shù)的降升(降次、升次)、運(yùn)算結(jié)構(gòu)的轉(zhuǎn)化(和式與積式的互化)解題時(shí)本著“三看”的基本原則來進(jìn)行:“看角、看函數(shù)、看特征”,基本的技巧有:巧變角,公式變形使用,化切割為弦,用倍角公式將高次降次 注意:和(差)角的函數(shù)結(jié)構(gòu)與符號(hào)特征;余弦倍角公式的三種形式選用;降次(升次)公式中的符號(hào)特征“正余弦三兄妹 的聯(lián)系”(常和三角換元法聯(lián)系在一起 ) 輔助角公式中輔助角的確定: (其中 角所在的象限由a, b的符號(hào)確定, 角的值由 確定)在求最值、化簡(jiǎn)時(shí)起著重要作用尤其是兩者系數(shù)絕對(duì)值之比為 的情形 有實(shí)數(shù)解 8三角函數(shù)性質(zhì)、圖像及其變換:

14、(1)三角函數(shù)的定義域、值域、單調(diào)性、奇偶性、有界性和周期性 注意:正切函數(shù)、余切函數(shù)的定義域;絕對(duì)值對(duì)三角函數(shù)周期性的影響:一般說來,某一周期函數(shù)解析式加絕對(duì)值或平方,其周期性是:弦減半、切不變既為周期函數(shù)又是偶函數(shù)的函數(shù)自變量加絕對(duì)值,其周期性不變;其他不定如 的周期都是 , 但 的周期為 , y=|tanx|的周期不變,問函數(shù)y=cos|x|, ,y=cos|x|是周期函數(shù)嗎? (2)三角函數(shù)圖像及其幾何性質(zhì): (3)三角函數(shù)圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換 (4)三角函數(shù)圖像的作法:三角函數(shù)線法、五點(diǎn)法(五點(diǎn)橫坐標(biāo)成等差數(shù)列)和變換法 9三角形中的三角函數(shù): (1)內(nèi)

15、角和定理:三角形三角和為 ,任意兩角和與第三個(gè)角總互補(bǔ),任意兩半角和與第三個(gè)角的半角總互余銳角三角形 三內(nèi)角都是銳角 三內(nèi)角的余弦值為正值 任兩角和都是鈍角 任意兩邊的平方和大于第三邊的平方 (2)正弦定理: (R為三角形外接圓的半徑) 注意:已知三角形兩邊一對(duì)角,求解三角形時(shí),若運(yùn)用正弦定理,則務(wù)必注意可能有兩解 (3)余弦定理: 等,常選用余弦定理鑒定三角形的類型 (4)面積公式: 五、向 量 1向量運(yùn)算的幾何形式和坐標(biāo)形式,請(qǐng)注意:向量運(yùn)算中向量起點(diǎn)、終點(diǎn)及其坐標(biāo)的特征 2幾個(gè)概念:零向量、單位向量(與 共線的單位向量是 ,特別: )、平行(共線)向量(無傳遞性,是因?yàn)橛?)、相等向量(

16、有傳遞性)、相反向量、向量垂直、以及一個(gè)向量在另一向量方向上的投影( 在 上的投影是 ) 3兩非零向量平行(共線)的充要條件 兩個(gè)非零向量垂直的充要條件 特別:零向量和任何向量共線 是向量平行的充分不必要條件! 4平面向量的基本定理:如果e1和e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)該平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù) 、 ,使a= e1 e2 5三點(diǎn) 共線 共線; 向量 中三終點(diǎn) 共線 存在實(shí)數(shù) 使得: 且 6向量的數(shù)量積: , , , 注意: 為銳角 且 不同向; 為直角 且 ; 為鈍角 且 不反向; 是 為鈍角的必要非充分條件 向量運(yùn)算和實(shí)數(shù)運(yùn)算有類似的地方也有區(qū)別:一個(gè)封閉圖形首尾連

17、接而成的向量和為零向量,這是題目中的天然條件,要注意運(yùn)用;對(duì)于一個(gè)向量等式,可以移項(xiàng),兩邊平方、兩邊同乘以一個(gè)實(shí)數(shù),兩邊同時(shí)取模,兩邊同乘以一個(gè)向量,但不能兩邊同除以一個(gè)向量,即兩邊不能約去一個(gè)向量;向量的“乘法”不滿足結(jié)合律,即 ,切記兩向量不能相除(相約) 7 注意: 同向或有 ; 反向或有 ; 不共線 (這些和實(shí)數(shù)集中類似) 8.中點(diǎn)坐標(biāo)公式 , 為 的中點(diǎn) 中, 過 邊中點(diǎn); ; 為 的重心; 特別 為 的重心 為 的垂心; 所在直線過 的內(nèi)心(是 的角平分線所在直線); 的內(nèi)心 六、不等式 1(1)解不等式是求不等式的解集,最后務(wù)必有集合的形式表示;不等式解集的端點(diǎn)值往往是不等式對(duì)應(yīng)

18、方程的根或不等式有意義范圍的端點(diǎn)值 (2)解分式不等式 的一般解題思路是什么?(移項(xiàng)通分,分子分母分解因式,x的系數(shù)變?yōu)檎担瑯?biāo)根及奇穿過偶彈回); (3)含有兩個(gè)絕對(duì)值的不等式如何去絕對(duì)值?(一般是根據(jù)定義分類討論、平方轉(zhuǎn)化或換元轉(zhuǎn)化); (4)解含參不等式常分類等價(jià)轉(zhuǎn)化,必要時(shí)需分類討論注意:按參數(shù)討論,最后按參數(shù)取值分別說明其解集,但若按未知數(shù)討論,最后應(yīng)求并集 2利用重要不等式 以及變式 等求函數(shù)的最值時(shí),務(wù)必注意a,b (或a ,b非負(fù)),且“等號(hào)成立”時(shí)的條件是積ab或和ab其中之一應(yīng)是定值(一正二定三等四同時(shí)) 3常用不等式有: (根據(jù)目標(biāo)不等式左右的運(yùn)算結(jié)構(gòu)選用) a、b、c

19、R, (當(dāng)且僅當(dāng) 時(shí),取等號(hào)) 4比較大小的方法和證明不等式的方法主要有:差比較法、商比較法、函數(shù)性質(zhì)法、綜合法、分析法 5含絕對(duì)值不等式的性質(zhì): 同號(hào)或有 ; 異號(hào)或有 注意:不等式恒成立問題的常規(guī)處理方式?(常應(yīng)用方程函數(shù)思想和“分離變量法”轉(zhuǎn)化為最值問題) 6不等式的恒成立,能成立,恰成立等問題 (1)恒成立問題 若不等式 在區(qū)間 上恒成立,則等價(jià)于在區(qū)間 上 若不等式 在區(qū)間 上恒成立,則等價(jià)于在區(qū)間 上 (2)能成立問題 若在區(qū)間 上存在實(shí)數(shù) 使不等式 成立,即 在區(qū)間 上能成立, ,則等價(jià)于在區(qū)間 上 若在區(qū)間 上存在實(shí)數(shù) 使不等式 成立,即 在區(qū)間 上能成立, ,則等價(jià)于在區(qū)間

20、上的 (3)恰成立問題 若不等式 在區(qū)間 上恰成立, 則等價(jià)于不等式 的解集為 若不等式 在區(qū)間 上恰成立, 則等價(jià)于不等式 的解集為 , 七、直線和圓 1直線傾斜角與斜率的存在性及其取值范圍;直線方向向量的意義( 或 )及其直線方程的向量式( ( 為直線的方向向量)應(yīng)用直線方程的點(diǎn)斜式、斜截式設(shè)直線方程時(shí),一般可設(shè)直線的斜率為k,但你是否注意到直線垂直于x軸時(shí),即斜率k不存在的情況? 2知直線縱截距 ,常設(shè)其方程為 或 ;知直線橫截距 ,常設(shè)其方程為 (直線斜率k存在時(shí), 為k的倒數(shù))或 知直線過點(diǎn) ,常設(shè)其方程為 或 注意:(1)直線方程的幾種形式:點(diǎn)斜式、斜截式、兩點(diǎn)式、截矩式、一般式、

21、向量式以及各種形式的局限性(如點(diǎn)斜式不適用于斜率不存在的直線,還有截矩式呢?) 與直線 平行的直線可表示為 ; 與直線 垂直的直線可表示為 ; 過點(diǎn) 與直線 平行的直線可表示為: ; 過點(diǎn) 與直線 垂直的直線可表示為: (2)直線在坐標(biāo)軸上的截距可正、可負(fù)、也可為0直線兩截距相等 直線的斜率為-1或直線過原點(diǎn);直線兩截距互為相反數(shù) 直線的斜率為1或直線過原點(diǎn);直線兩截距絕對(duì)值相等 直線的斜率為 或直線過原點(diǎn) (3)在解析幾何中,研究?jī)蓷l直線的位置關(guān)系時(shí),有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合 3相交兩直線的夾角和兩直線間的到角是兩個(gè)不同的概念:夾角特指相交兩

22、直線所成的較小角,范圍是 ,而其到角是帶有方向的角,范圍是 注:點(diǎn)到直線的距離公式 特別: ; ; 4線性規(guī)劃中幾個(gè)概念:約束條件、可行解、可行域、目標(biāo)函數(shù)、最優(yōu)解 5圓的方程:最簡(jiǎn)方程 ;標(biāo)準(zhǔn)方程 ; 一般式方程 ; 參數(shù)方程 為參數(shù)); 直徑式方程 注意: (1)在圓的一般式方程中,圓心坐標(biāo)和半徑分別是 (2)圓的參數(shù)方程為“三角換元”提供了樣板,常用三角換元有: , , , 6解決直線與圓的關(guān)系問題有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價(jià)轉(zhuǎn)化求解,重要的是發(fā)揮“圓的平面幾何性質(zhì)(如半徑、半弦長(zhǎng)、弦心距構(gòu)成直角三角形,切線長(zhǎng)定理、割線定理、弦切角定理等等)的作用!” (1)過圓

23、上一點(diǎn) 圓的切線方程是: , 過圓 上一點(diǎn) 圓的切線方程是: , 過圓 上一點(diǎn) 圓的切線方程是: 如果點(diǎn) 在圓外,那么上述直線方程表示過點(diǎn) 兩切線上兩切點(diǎn)的“切點(diǎn)弦”方程 如果點(diǎn) 在圓內(nèi),那么上述直線方程表示與圓相離且垂直于 ( 為圓心)的直線方程, ( 為圓心 到直線的距離) 7曲線 與 的交點(diǎn)坐標(biāo) 方程組 的解; 過兩圓 、 交點(diǎn)的圓(公共弦)系為 ,當(dāng)且僅當(dāng)無平方項(xiàng)時(shí), 為兩圓公共弦所在直線方程 八、圓錐曲線 1圓錐曲線的兩個(gè)定義,及其“括號(hào)”內(nèi)的限制條件,在圓錐曲線問題中,如果涉及到其兩焦點(diǎn)(兩相異定點(diǎn)),那么將優(yōu)先選用圓錐曲線第一定義;如果涉及到其焦點(diǎn)、準(zhǔn)線(一定點(diǎn)和不過該點(diǎn)的一定直

24、線)或離心率,那么將優(yōu)先選用圓錐曲線第二定義;涉及到焦點(diǎn)三角形的問題,也要重視焦半徑和三角形中正余弦定理等幾何性質(zhì)的應(yīng)用 (1)注意:圓錐曲線第一定義與配方法的綜合運(yùn)用; 圓錐曲線第二定義是:“點(diǎn)點(diǎn)距為分子、點(diǎn)線距為分母”,橢圓 點(diǎn)點(diǎn)距除以點(diǎn)線距商是小于1的正數(shù),雙曲線 點(diǎn)點(diǎn)距除以點(diǎn)線距商是大于1的正數(shù),拋物線 點(diǎn)點(diǎn)距除以點(diǎn)線距商是等于1圓錐曲線的焦半徑公式如下圖: 2圓錐曲線的幾何性質(zhì):圓錐曲線的對(duì)稱性、圓錐曲線的范圍、圓錐曲線的特殊點(diǎn)線、圓錐曲線的變化趨勢(shì)其中 ,橢圓中 、雙曲線中 重視“特征直角三角形、焦半徑的最值、焦點(diǎn)弦的最值及其頂點(diǎn)、焦點(diǎn)、準(zhǔn)線等相互之間與坐標(biāo)系無關(guān)的幾何性質(zhì)”,尤其

25、是雙曲線中焦半徑最值、焦點(diǎn)弦最值的特點(diǎn) 注意:等軸雙曲線的意義和性質(zhì) 3在直線與圓錐曲線的位置關(guān)系問題中,有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價(jià)轉(zhuǎn)化求解特別是: 直線與圓錐曲線相交的必要條件是他們構(gòu)成的方程組有實(shí)數(shù)解,當(dāng)出現(xiàn)一元二次方程時(shí),務(wù)必“判別式0”,尤其是在應(yīng)用韋達(dá)定理解決問題時(shí),必須先有“判別式0” 直線與拋物線(相交不一定交于兩點(diǎn))、雙曲線位置關(guān)系(相交的四種情況)的特殊性,應(yīng)謹(jǐn)慎處理 在直線與圓錐曲線的位置關(guān)系問題中,常與“弦”相關(guān),“平行弦”問題的關(guān)鍵是“斜率”、“中點(diǎn)弦”問題關(guān)鍵是“韋達(dá)定理”或“小小直角三角形”或“點(diǎn)差法”、“長(zhǎng)度(弦長(zhǎng))”問題關(guān)鍵是長(zhǎng)度(弦長(zhǎng))

26、公式 ( , , )或“小小直角三角形” 如果在一條直線上出現(xiàn)“三個(gè)或三個(gè)以上的點(diǎn)”,那么可選擇應(yīng)用“斜率”為橋梁轉(zhuǎn)化 4要重視常見的尋求曲線方程的方法(待定系數(shù)法、定義法、直譯法、代點(diǎn)法、參數(shù)法、交軌法、向量法等), 以及如何利用曲線的方程討論曲線的幾何性質(zhì)(定義法、幾何法、代數(shù)法、方程函數(shù)思想、數(shù)形結(jié)合思想、分類討論思想和等價(jià)轉(zhuǎn)化思想等),這是解析幾何的兩類基本問題,也是解析幾何的基本出發(fā)點(diǎn) 注意:如果問題中涉及到平面向量知識(shí),那么應(yīng)從已知向量的特點(diǎn)出發(fā),考慮選擇向量的幾何形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化,還是選擇向量的代數(shù)形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化 曲線與曲線方程、軌跡與軌跡方程是兩個(gè)

27、不同的概念,尋求軌跡或軌跡方程時(shí)應(yīng)注意軌跡上特殊點(diǎn)對(duì)軌跡的“完備性與純粹性”的影響 在與圓錐曲線相關(guān)的綜合題中,常借助于“平面幾何性質(zhì)”數(shù)形結(jié)合(如角平分線的雙重身份)、“方程與函數(shù)性質(zhì)”化解析幾何問題為代數(shù)問題、“分類討論思想”化整為零分化處理、“求值構(gòu)造等式、求變量范圍構(gòu)造不等關(guān)系”等等 九、直線、平面、簡(jiǎn)單多面體 1計(jì)算異面直線所成角的關(guān)鍵是平移(補(bǔ)形)轉(zhuǎn)化為兩直線的夾角計(jì)算 2計(jì)算直線與平面所成的角關(guān)鍵是作面的垂線找射影,或向量法(直線上向量與平面法向量夾角的余角),三余弦公式(最小角定理, ),或先運(yùn)用等積法求點(diǎn)到直線的距離,后虛擬直角三角形求解注:一斜線與平面上以斜足為頂點(diǎn)的角的兩

28、邊所成角相等 斜線在平面上射影為角的平分線 3空間平行垂直關(guān)系的證明,主要依據(jù)相關(guān)定義、公理、定理和空間向量進(jìn)行,請(qǐng)重視線面平行關(guān)系、線面垂直關(guān)系(三垂線定理及其逆定理)的橋梁作用注意:書寫證明過程需規(guī)范 特別聲明: 證明計(jì)算過程中,若有“中點(diǎn)”等特殊點(diǎn)線,則常借助于“中位線、重心”等知識(shí)轉(zhuǎn)化 在證明計(jì)算過程中常將運(yùn)用轉(zhuǎn)化思想,將具體問題轉(zhuǎn)化 (構(gòu)造) 為特殊幾何體(如三棱錐、正方體、長(zhǎng)方體、三棱柱、四棱柱等)中問題,并獲得去解決 如果根據(jù)已知條件,在幾何體中有“三條直線兩兩垂直”,那么往往以此為基礎(chǔ),建立空間直角坐標(biāo)系,并運(yùn)用空間向量解決問題 4直棱柱、正棱柱、平行六面體、長(zhǎng)方體、正方體、正

29、四面體、棱錐、正棱錐關(guān)于側(cè)棱、側(cè)面、對(duì)角面、平行于底的截面的幾何體性質(zhì) 如長(zhǎng)方體中:對(duì)角線長(zhǎng) ,棱長(zhǎng)總和為 ,全(表)面積為 ,(結(jié)合 可得關(guān)于他們的等量關(guān)系,結(jié)合基本不等式還可建立關(guān)于他們的不等關(guān)系式), ; 如三棱錐中:側(cè)棱長(zhǎng)相等(側(cè)棱與底面所成角相等) 頂點(diǎn)在底上射影為底面外心,側(cè)棱兩兩垂直(兩對(duì)對(duì)棱垂直) 頂點(diǎn)在底上射影為底面垂心,斜高長(zhǎng)相等(側(cè)面與底面所成相等)且頂點(diǎn)在底上在底面內(nèi) 頂點(diǎn)在底上射影為底面內(nèi)心 如正四面體和正方體中: 5求幾何體體積的常規(guī)方法是:公式法、割補(bǔ)法、等積(轉(zhuǎn)換)法、比例(性質(zhì)轉(zhuǎn)換)法等注意:補(bǔ)形:三棱錐 三棱柱 平行六面體 分割:三棱柱中三棱錐、四三棱錐、三棱柱的體積關(guān)系是 6多面體是由若干個(gè)多邊形圍成的幾何體棱柱和棱錐是特殊的多面體 正多面體的每個(gè)面都是相同邊數(shù)的正多邊形,以每個(gè)頂點(diǎn)為其一端都有相同數(shù)目的棱,這樣的多面體只有五種, 即正四面體、正六面體、正八面體、正十二面體、正二十面體 9球體積公式 ,球表面積公式 ,是兩個(gè)關(guān)于球的幾何度量公式它們都是球半徑及的函數(shù) 十、導(dǎo) 數(shù) 1導(dǎo)數(shù)的意義:曲線在該點(diǎn)處的切線的斜率(幾何意義)、瞬時(shí)速度、邊際成本(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論