




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、注意未知數(shù)的理解, 題型: 方法: 例1、【知識點二:一元一次方程的定義】一元一次方程:只含有一個未知數(shù) (元); 并且未知數(shù)的次數(shù)都是 1(次); 這樣的整式方程叫做-一 題型一:判斷給出的代數(shù)式、等式是否為方法:定義法 例2、判定下列哪些是一元一次方程?2 22(x X) X 0 , x 17,x兒一次方程。-次方程x 3x, a 3第三章:一元一次方程本章板塊1定義2. 等式的基本性質元一次方程3.解方程4方程的解5.實際問題與一元一次方 程知識梳理【知識點一:方程的定義】 方程:含有未知數(shù)的等式就叫做方程。x, m,n等,都可以作為未知數(shù)。判斷給出的代數(shù)式、等式是否為方程定義法判定下列
2、式子中,哪些是方程?(1)x y 4( 2)x 2( 3)2 46(4)x29題型二:形如一元一次方程,求參數(shù)的值方法:x2的系數(shù)為x的次數(shù)等于x的系數(shù)不能為例3、如果m 1 xm0是關于x的兒一次方程,求m的值例4、若方程2a 1X2ax 5 0是關于x的一元一次方程,求 a的值【知識點三:等式的基本性質】等式的性質1:等式兩邊都加上(或減去)同個數(shù)(或式子),結果仍相等。即:若 a=b,則a c=b c等式的性質2:等式兩邊同時乘以同一個數(shù),或除以同一個不為b若 a b,貝y ac be ;若 a例5、運用等式性質進行的變形,A、如果 a=b,那么 a-e=b-ebeb,e 0 且- e
3、不正確的是(B、如果a=b,e)那么 a+c=b+c0的數(shù),結果仍相等。即:aC 如果a=b,那么一e【知識點四:解方程】、如果 a=b,那么 ae=be方程的一般式是:ax題型一:不含參數(shù),求一兒 方法:次方程的解例7、解方程42 3x 58 2練習1、2x5 x43 2x 1 5x 3步驟具體做法依據(jù)注意事項1.去分母在方程兩邊都乘以各分 母的最小公倍數(shù)等式基本性質2防止漏乘(尤其整數(shù)項), 注意添括號;2.去括號先去小括號,再去中括 號,最后去大括號去括號法則、 分配律括號前面是“ +”號,括 號可以直接去,括號前面 是“-”號,括號里的每 一項都要變號3.移項把含有未知數(shù)的項都移 到方
4、程的一邊,其他項 都移到方程的另一邊(移項一定要變號)等式基本性質1移項要變號,不移不變號;4.合并同類 項將方程化簡成ax ba 0合并同類項法 則計算要仔細5.化系數(shù)為1方程兩邊同時除以未知 數(shù)的系數(shù)a,得到方程 的解等式基本性質2計算要仔細,分子分母勿 顛倒練習2、0.2x o.1 0.5x o.1 10.60.4練習3、13:題型二: 方法: 并求值。解方程的題中,有相同的含 x的代數(shù)式利用整體思想解方程,將相同的代數(shù)式用另一個字母來表示,從而先將方程化簡, 再將得到的值與該代數(shù)式相等,求解原未知數(shù)。曲 C 2x 12 2x 15 2x 1, c例 & 40236先求出整體的值,進而再
5、求x的值。題型三:方程含參數(shù),分析方程解的情況方法:分情況討論,a0時,方程有唯一解x -a0時,方程有無窮解;0,0,0時,方程無解。例9、探討關于x的方程ax3 0解的情況思路點撥:因為含有x的項均在“ 2x 1 ”中,所以我們可以將作為“ 2x 1 ”一個整體,【知識點五:方程的解】方程的解:使方程左右兩邊值相等的未知數(shù)的值,叫做方程的解。 題型一:問x的值是否是方程的解方法:將x的值代入方程的左、右兩邊,看等式是否成立。2x 1例10、檢驗x 5和x5是不是方程x 2的解3題型二:給出的方程含參數(shù),已知解,求參數(shù)方法:將解代入原方程,從而得到關于參數(shù)的方程,解方程求參數(shù)例11、若x3是
6、方程k x 4 2k x 5的解,求k的值題型三:方程中含參數(shù),但在解方程過程中將式子中某一項看錯了,從而得到錯誤的解, 求參數(shù)的值解方3,請你方法:將錯誤的解代入錯誤的方程中,等式仍然成立,從而得到關于參數(shù)的正確方程, 程求參數(shù)例12、小張在解關于x的方程3a 2x 15時,誤將 2x看成2x得到的解為x 求出原來方程的解?;蛘摺斑@題型四:給出的兩個方程中,其中一個方程含參數(shù),并且題目寫出“方程有相同解” 個方程的解同時也滿足另一個方程”。要求參數(shù)的值或者含參數(shù)代數(shù)式的值 方法:求出其中一個不含參的方程的解,并將這個解代入到另一個方程中,從而得到關于參數(shù)的方程,解方程求參數(shù)即可例13、若方程
7、3 2x 12 3x和關于x的方程62k 2x1有相同的解,求k的值題型五:方法:解方程的題中,方程含絕對值 根據(jù)絕對值的代數(shù)意義:分情況討論。例14、2xa|a|0(a(a(a0)0)0)題型六:方法:次方程的步驟解方程。方程中含絕對值,探討方程解的個數(shù) 根據(jù)絕對值的代數(shù)意義去絕對值,再根據(jù)一兒例15、求3x x 24的解的個數(shù)【知識點六:實際應用與一兒 列一一(1)(2)(3)(4)次方程】 兒一次方程解應用題的一般步驟: )審題,分析題中已知什么,未知什么,明確各量之間的關系,尋找等量關系; )設未知數(shù),一般求什么就設什么為X,有時也可間接設未知數(shù);)列方程,把相等關系左右兩邊的量用含有
8、未知數(shù)的代數(shù)式表示出來,列出方程; )解方程(5)檢驗,看方程的解是否符合題意;(6)作答。題型一:和、差、倍、分問題例15、小明暑期讀了一本名著,這本名著一共有950頁,已知他讀了的是沒讀過的三倍,問小明還有多少頁書沒讀?題型二:調配問題例16、有兩個工程隊,甲工程隊有程隊人數(shù)的2倍,題型三:行程問題1.相遇問題 路程=速度X時間 快行距+慢行距=原距 例17、甲、乙兩人從相距 是乙的速度的兩倍,求甲、(四種)時間=路程十速度速度=路程十時間500米的A B兩地分別出發(fā),4小時后兩人相遇,已知甲的速度 乙兩人的速度2. 追及問題2.1行程中追及問題:例18、甲分鐘跑240米,乙每分鐘跑 20
9、0米,乙比甲先跑 30分鐘,問何時甲能追上乙?快行距-慢行距=原距2.2 時鐘追及問題: 個小格,每個小格為 分針速度:每分鐘走時針速度:每分鐘走整個鐘面為360度,上面有12個大格,每個大格為 30度;60 6度。1小格,每分鐘走6度1小格,每分鐘走 0.5度12例18、在6點和7點之間,什么時刻時鐘的分針和時針重合?3. 環(huán)形跑道例19、甲、乙兩人在 400米長的環(huán)形跑道上跑步,甲分鐘跑240米,乙每分鐘跑 200米,二人同時同地同向出發(fā),幾分鐘后二人相遇?若背向跑,幾分鐘后相遇?4. 航行問題:順水(風)速度=靜水(風)速度+水流(風)速度 逆水(風)速度=靜水(風)速度水流(風)速度
10、水流速度=(順水速度-逆水速度)十2例20、一艘船在兩個碼頭之間航行,水流的速度是3千米/時,順水航行需要2小時,逆水航行需要3小時,求兩碼頭之間的距離。32人,乙工程隊有 28人,如果是甲工程隊的人數(shù)是工 需從乙工程隊抽調多少人到甲工程隊?題型四:打折利潤問題利潤=售價-成本利潤率成潤100%售價-成本100%成本成本40%問這種鞋的標價是多少元?優(yōu)惠價是多少?例21、某商店開張為吸引顧客,所有商品一律按八折優(yōu)惠出售,已知某種旅游鞋每雙進價 為60元,八折出售后,商家所獲利潤率為題型五:工程問題工作總量=工作效率X工作時間工作效率工作總量工作時間工作時間工作總量 工作效率例22、一項工程,甲
11、單獨做要 10天完成, 的部分由乙單獨做,還需要幾天完成?乙單獨做要 15天完成,兩人合做 4天后,剩下題型六:數(shù)字問題例23、若一個兩位數(shù)十位上數(shù)字與個位上數(shù)字之和為8,把這個兩位數(shù)減去 36后,得到的結果恰好是這個兩個位數(shù)對調之后組成的數(shù),求原來的兩位數(shù)是多少?題型七:年齡問題例24、甲比乙大15歲,5年前甲的年齡是乙的兩倍,那么乙現(xiàn)在的年齡是多少歲?本章總結:宀義判斷哪些是一元一次方程1. 疋乂方程中含參數(shù),并且是一元一次方程,求參數(shù)等式的基本性質12. 等式的基本性質等式的基本性質2分數(shù)的基本性質1. 去分母2. 去括號3. 移項、合并同類項4. 化系數(shù)為1換元法不含參數(shù)基本法3.解方程1. 有唯一解含有參數(shù)-討論未知數(shù)的系數(shù)問題2.無解3. 有無數(shù)個解4、口1.判斷某個數(shù)是否為方程的解丿人方不4方程的解2.已知解,求參數(shù)3已知兩個方程有相同解,求參數(shù)4.方程中不含參數(shù),但含 有絕對值,討論解的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度茶樓租賃合同茶樓與茶藝培訓學校合作框架協(xié)議
- 二零二五年度在線教育平臺師資聘用協(xié)議
- 食用菌種植技術服務合同
- 英語語法中的定語從句詳解:九年級英語語法基礎強化教案
- 幼兒園繪本閱讀感悟分享
- 產品分銷銷售服務條款及目標協(xié)定
- 數(shù)據(jù)驅動的環(huán)保產業(yè)發(fā)展戰(zhàn)略協(xié)議
- 提升職場技能與素質
- 數(shù)理化習題集:高三化學知識點強化練習計劃
- 家電產品渠道經(jīng)銷協(xié)議
- 人工智能在維修行業(yè)的應用
- 福建省泉州市第五中學2023-2024學年八年級下學期期中語文試題
- 2024CSCO惡性腫瘤患者營養(yǎng)治療指南解讀
- 自我解壓與情緒管理課件
- 2024年時政必考試題庫ab卷
- 語法選擇10篇(名校模擬)-2024年中考英語逆襲沖刺名校模擬真題速遞(廣州專用)
- 通達信公式函數(shù)說明大全
- 體育初中學生學情分析總結報告
- MOOC 中國文化概論-武漢大學 中國大學慕課答案
- 高三心理健康輔導講座省公開課一等獎全國示范課微課金獎
- 《工程建設標準強制性條文電力工程部分2023年版》
評論
0/150
提交評論