人教版數學六年級下冊圓柱與圓錐教學設計_第1頁
人教版數學六年級下冊圓柱與圓錐教學設計_第2頁
人教版數學六年級下冊圓柱與圓錐教學設計_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、教材分析本單元是在認識了圓, 掌握了長方體、 正方體的特征以及表面積與體積計算方法的基礎 上編排的,是小學階段學習幾何知識的最后一部分內容。圓柱與圓錐都是基本的幾何形體, 也是生產、 生活中經常遇到的幾何形體。 教學圓柱和圓錐擴大了學生認識形體的范圍, 增加 了形體的知識,有利于進一步發(fā)展空間觀念。學情分析:小學生的思維正在由形象思維向抽象思維轉變, 本單元立體圖形的學習利于發(fā)展學生的 空間觀念。教學中要充分利用直觀學具,讓學生觀察、動手、動腦,豐富其表象,訓練形象 思維,而本節(jié)的復習課又便于培養(yǎng)學生自主獲取知識的能力和整理、 分析、綜合概括的能力。教學目標:(1)知識目標:引導學生通過回憶、

2、整理、拓展等實踐活動,掌握圓柱與圓錐的相關 特點與特征,并能熟練地運用公式進行圓柱、圓錐表面積或體積的計算。( 2)能力目標:通過讓學生對知道的整理提高學生的自主獲取知識與概括知識能力。 在練習、討論、合作中發(fā)展學生的空間觀念,并進一步提高運用知識解決實際問題的能力。( 3)情感目標:通過整理、交流、合作、探究、體驗探究的樂趣,感受數學的價值, 培養(yǎng)學生“學數學、用數學”的意識和創(chuàng)新的精神。教學重點、難點:重點: 掌握圓柱與圓錐的相關特點與特征, 并能熟練地運用公式進行圓柱、 圓錐表面積 或體積的計算。難點:通過對知識進行整理,提高學生自主獲取知識與概括知識的能力。教學準備:課件教學過程:(一

3、)明確復習目標 同學們,我們在圓柱和圓錐這一單元中學習了有關圓柱、圓錐的相關知識,今天這 節(jié)課我們來對這些知識做一個系統(tǒng)的整理并運用它們來解決一些生活中的實際問題。(二)學生自主作業(yè)讓同學們自主整理本章知識。(三):兩兩交流、解疑(兵教兵) 同桌之間交流整理成果、相互解答各自的疑惑。(四)組內幫教、組間交流、解疑小組內合作, 復習鞏固本單元學習的主要計算公式; 組間交流, 提出自己學習中的疑惑 并相互給予解答。(五)小組展示,討論、完善,形成基本的知識網絡。 各組選派代表,展示、完善整理成果。圓柱和圓錐基本特征 基本公式圓柱 兩個底面,側面積=底面周長X高一個側面 表面積=側面積+底面積X 2

4、體積= 底面積X高圓錐 一個底面,一個側面 體積=底面積X高十3教師點撥: (1)圓柱的側面怎樣剪展開圖是平行四邊形?(2)圓柱展開圖與圓柱有什么關系?( 3)說出圓柱體積公式的推導過程。 (遷移運用圓面積推導的轉化思想) (4)回憶說出圓錐體積公式推導的實驗過程。設計意圖: 通過對知識的整理,提高學生自主獲取知識與分析、綜合、概括知識的 能力,在小組交流中,培養(yǎng)合作、質疑、辯論的能力。(六)鞏固應用、互練互測(兵練兵) 1屏幕呈現:一個圓柱體木料,底面直徑20 厘米,高 30 厘米。( 1)根據已知條件,結合已學圓柱、圓錐的知識,提出問題,看誰的更有創(chuàng)意?(2)學生思考后提出問題。預設問題:

5、 木料的側面積是多少?表面積是多少? 木料的體積是多少? 把木料削成一個最大的圓錐,它的體積是多少? 設計意圖: 通過觀察、思考,讓同學們根據所學知識,提出有價值的數學問題,培 養(yǎng)學生的問題意識和聯(lián)系實際解決問題的能力。2“刷”出表面積有關的知識。 教師引導:針對這一圓木,生活中在什么情況下需要求表面積? 預設回答:給圓木涂油漆求涂漆面積的時候需要用表面積的知識。 教師追問:給圓木涂油漆有幾種情況?都發(fā)生在什么條件下?預設回答:丨如果是柱子時,只刷側面。 如果是個木樁,只涂一個側面和一個上面。 如果是個圓木料,可涂整個表面。設計意圖: 一個“刷”,刷出了與表面積有關的符合實際的有價值的問題,培

6、養(yǎng)了學 生靈活運用所學知識解決實際問題的能力。3“切”出新的表面,求增加加的表面積。教師引導: 有同學說可以把圓木切開,求表面積增加了多少平方厘米,那同學們說 說可以怎樣來切?預設回答: 可以橫切,分兩段切一刀,增加兩個底面大小的面,分三段切兩刀,增加4個底面大小的面,以此類推。 還可以沿直徑縱切,增加兩個長方形的面,長和圓柱的高相等,寬和直徑相等。 課件演示: 橫切和縱切設計意圖: 橫切、縱切兩種不同的切法探究,加上課件的演示,能進一步發(fā)展學生 的空間觀念。4“削”出圓錐,討論圓柱與對應圓錐的關系。教師引導: 除了對圓木 “涂”“切”以外, 有同學說還可以 “削”成一個最大的圓錐。 那怎樣“

7、削”才算是最大呢?你能用四句話說出它們之間的關系嗎?預設回答: 等底等高的圓柱和圓錐:圓柱體積是圓錐體積的3 倍,圓錐體積是圓柱體積的三分之一,圓柱體積比圓錐體積多 2 倍,圓錐體積比圓柱體積少三分之二。教師引導: 如果圓柱和圓錐等底等積,那你能說出它們之間的關系嗎?預設回答: 圓柱和圓錐等底等積:圓柱高是圓錐高的三分之一,圓錐高是圓柱高的3 倍。教師引導: 如果圓柱和圓錐等高等積,那你能說出它們之間的關系嗎?預設回答: 圓柱和圓錐等高等積:圓柱底是圓錐底的三分之一,圓錐底是圓柱底的 3 倍。設計意圖: 將圓柱削成一個最大圓錐,讓同學們討論分析兩者之間的關系,便于進 一步理解兩者的內在聯(lián)系,從

8、而進一步發(fā)展學生的空間觀念。5“挖”出容積。教師引導: 我們還可以對圓木如何加工呢 ?預設回答: 可以挖成一個木桶, 求求它的容積, 內外涂清漆, 求涂漆的面積是多少。教師追問: 容積和體積有何聯(lián)系和區(qū)別?設計意圖: “挖”出容積, 將容積和體積加以何聯(lián)系和區(qū)別, 木桶的內外都涂上清漆, 與前面的涂漆問題加以聯(lián)系和區(qū)分,學生的空間觀念得以進一步的發(fā)展。(七)聯(lián)系實際,解決實際問題。學校要修建一個圓形水池,池內安裝噴泉,水池直徑5 米,深 1.5 米。你能提出哪些數學問題?預設問題: 水池的占地面積是多少平方米? 挖這個水池要挖出多少立方米的土? 如果給水池貼瓷磚,貼瓷磚的面積是多少? 水池裝滿水,能裝多少立方米?教師提問: 如果給水池接一圈水管,并4米安裝一個噴頭,需要按幾個? 池內如果注入 1.2 米深的水,那將有多少立方米的水? 教師追問:每一個問題都涉及哪些方面的知識? 設計意圖:一個水池問題,讓同學們再一次將所學的知識應用到問題解決中,可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論