版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、第5章回歸方程的函數(shù)形式the function forms of regression modelcontents log-linear model: measure elasticity (double log model) semi-log model log dependent variable: measure growth (log-lin model) log independent variables (lin-log model) hyperbolic model polynomial model summarylog-linear model:measure elastic
2、ity121212sometimes, well meet the model like the following:then how to estimate the model in ols?you see, in the model, dependent variable is notlinear with the parameters and .uyaxxeylog-linear model:measure elasticity 1122*01122*but, if we transfrom the model by log two sides simutaneously, we get
3、 a new model as following:lnlnlnlnnow, we denote ln,ln,ln,lnthen we can rewrite the model asyaxxuyyaxxxxy*01122which is just general multiple regression modelwhat we have learned in last chapter.xxulog-linear model:measure elasticity 01122 lnlnlnthe model above is often called in the log-linear mode
4、l, the partialcoefficients are the elasticity of over .for example, in the myxxuyxslog-linear model or double log model. 111111111odel above,ln lnwhich just denote the elasticity of over .that is, change 1%, will change %.dyxdy ydydxdxxdxyyxxylog-linear model: example in the end of 1920s, american m
5、athematician charles cobb and economist paul dauglas put forward the famous production function, that is, cobb-dauglas production function. the c-d production function is as followingy = alak, the econometric model will be y = alak euwhere y denote the production, gdp, for example, l denote labor in
6、put to the production, and k denote total capital. a is the production elasticity of labor, is the production elasticity of capital.log-linear model: example y = alak 11we cant estimate the model directly, but wecan transform the model to log-linear model.lnlnlnlnwhere is the error term and is normd
7、ydldylalkl yyldlydydkdykal kk yykdkyyalkuuaaaaaal distribution.then we can use ols to estimate the new model.just the production elasticity of laborjust the production elasticity of capitalexample : the original datayearylkyearylk1955 11404393101821131965212323117463157151956 12041085291937491966226
8、977115213376421957 13470587382051921967241194115403635991958 12918789522151301968260881120663918471959 13996091712250211969277498122974223821960 15051195692370261970296530129554550491961 15789795272488971971306712133384846771962 16528696622606611972329030137385205531963 17849110334275466197335405715
9、9245615311964 19945710981295387197437497714154609825example (textbook, ex5.2, p105): the transformed datayearln(y)ln(l)ln(k)yearln(y)ln(l)ln(k)195511.64 9.14 12.11 196512.27 9.37 12.66 195611.70 9.05 12.17 196612.33 9.35 12.73 195711.81 9.08 12.23 196712.39 9.35 12.80 195811.77 9.10 12.28 196812.47
10、9.40 12.88 195911.85 9.12 12.32 196912.53 9.42 12.95 196011.92 9.17 12.38 197012.60 9.47 13.03 196111.97 9.16 12.42 197112.63 9.50 13.09 196212.02 9.18 12.47 197212.70 9.53 13.16 196312.09 9.24 12.53 197312.78 9.68 13.24 196412.20 9.30 12.60 197412.83 9.56 13.32 example (textbook, ex5.2,): the estim
11、ated regression the estimated model:ln() = -1.652 + 0.3397 ln(l) +0.846 ln(k) se = (0.606) (0.186) (0.093) t = (-2.73) (1.83) (9.06) p = (0.014) (0.085) (0.000) n=20, r2=0.9951 adj-r2=0.9945 f=1719.46 remark:the production elasticity of labor is 0.3397, that is, if labor increase 1%,the production w
12、ill increase 0.3397%.in the same way, the production elasticity of capital is 0.846, thats, if capital increase 1%, the production will increse 0.846%.example 5.3 demand for energy: the original datayeardemandgdppriceyeardemandgdpprice196054.154.1111.9197297.294.395.6196155.456.4112.4197310010010019
13、6258.559.4111.1197497.3101.4120.1196361.762.1110.2197593.5100.5131196463.665.9109197699.1105.3129.6196566.869.5108.31977100.9109.9137.7196670.373.2105.31978103.9114.4133.7196773.575.7105.41979106.9118.3144.5196878.379.9104.31980101.2119.6179196983.383.8101.7198198.1121.1189.4197088.986.297.7198295.6
14、120.6190.9197191.889.8100.3example 5.3 demand for energy(textbook, p106) example 5.3 give the data about the energy demand of seven oecd countries during 19601982. in the table, demand is the total demand for energy, gdp for real gdp, and price for real energy price. now, we want to estimate the ene
15、rgy demand function. here, we use the log-linear model as following: ln(demand) = 0 1 ln(gdp) + 2 ln(price) + u1 is the income elasticity of demand.2 is the price elasticity of demandexample 5.3: the estimated regression the estimated model:ln(demand) =1.54950.9972 ln(gdp)0.3315ln(price) se =(0.0901
16、) (0.0191) (0.0243) t =(17.20) (52.17) (-13.63) p =(0.000) (0.000) (0.000)n=23 r2=0.994 adj-r2=0.9935 f=1693.67 remark:the energy demand is positive related with real gdp and negative related with energy price, which accord with the economic theory.the demand elasticity of income is 0.9972, that is,
17、 when other factors fixed, if real gdp increase 1%, the demand for energy will increase 0.9972%.the demand elasticity of price is -0.3315, which means when income is fixed, if the price for energy increase 1%, the demand for energy will decrease 0.3315%.semi-log model there are two kinds of semi- lo
18、g model: the dependent variable is logged and the independent variables is logged. log dependent variable (log-lin model) ln(y) = 0 1 x1 + 2 x2 + u log independent variables (lin-log model)y = 0 1 ln(x1) + 2 lnx2) + ulog dependent variable:measure growth ratew see a simple regression modelln(y) = 0
19、1 x + uw what does the coefficient of x mean?we know that 1 is partial deviation of ln(y) to x, that is,so, the 1 means that independent variable x change 1 unit, the variable y will change 1001 %.note here the x is absolute value and y is the relative value. that is, 1 is the growth rate of y when
20、x change 1 unit. 1lndydy ydxdxexample: wage determinationw the estimated model:log(wage)=0.2840.092educ+0.0041exper+0.022tenure se = (0.1042)(0.0920) (0.0041) (0.0031) t = (2.73) (12.56) (2.39) (7.13) n=526 r2=0.3160 adj-r2=0.3121 f=80.39w remark:the partial coefficient for educ is 0.092, which mean
21、s when the education increase 1 year with exper and tenure fixed, then the wage per hour will increase the same meaning to the partial coefficients for exper and tenure.9.2%.example: 1960-1982 gdp growthw let y0 stand for the value of gdp in 1960 and assume the average gdp growth rate is r, then the
22、 gdp in 1961 will bey1=y0(1+r), the gdp in 1962 will bey2=y1(1+r)=y0(1+r)2, in the same way, the gdp for t year beyond the initial year will beyt=y0(1+r)t. (*)w now, we have the data for gdp (y) during 19601982. (see example 5.3), we want to estimate the average growth rate of gdp during the period.
23、 what should we do?we logged equation (*) two sides simultaneously, and get, ln(yt)=ln(y0) + tln(1+r)example: 1960-1982 gdp growthw the corresponding econometric model isln(yt)=ln(y0) + tln(1+r) + ulet 0 = ln(y0), and 1= ln(1+r)rw the the model can rewrite asln(yt)= 0 + 1 t + unow, you see, the part
24、ial coefficient 1 stand for the growth of y when t change 1 unit. that is, 1 is just the growth rate of real gdp.the data for real gdp (yt)yeartgdpyeartgdpyeartgdp1960054.11968879.9197616105.31961156.41969983.8197717109.91962259.419701086.2197818114.41963362.119711189.8197919118.31964465.919721294.3
25、198020119.61965569.5197313100198121121.11966673.2197414101.4198222120.61967775.7197515100.56080100120gdp19601965197019751980yearthe scatter between real gdp and t6080100120gdp0510152025texample: 1960-1982 gdp growthw using the data for real gdp from example 5.3, we estimate the modelln(t)= 4.044 + 0
26、.0382 tse =(0.0158) (0.0012)t = (255.38) (30.97)n=23, r2=0.9786 adj-r2=0.9776 f=958.96w remark:the slope of the estimate equation is 0.0382, which means that the growth rate for real gdp is 3.82% every year in average.the estimated slope is often called instantaneous growth rate. but we can easily c
27、alculate the compound growth rate by ln(1+r)=0.0382, therefore,r=e0.0382-1=1.0389-1=0.0389=3.89%.linear trend model6080100120gdp0510152025tw using the data for real gdp from example 5.3, we estimate the modelt= 50.3 + 3.277 tse= (0.776)(0.0566)t = (64.82)(57.90)n=23 r2=0.9938 adj-r2=0.9935 f=3352.72
28、w remark:the slope means that t increase 1 unit, the real gdp will inrease 3.277, which is absolute value. that is, real gpd in this year will 3.277 greater than that of the year before this year.linear trend modelsometimes, we meet the model with independent variables logged, such asy = 0 1 ln(x1)
29、+ 2 lnx2) + uthen what are the meaning of the partial coefficients?for example,so, 1 means that when independent variable x1 changes 1%, the dependent variable will changenote, the change of x1 is relative value and y is absolute value.1111111, lndxdydydydxdxxx1/100.the relation between usa gnp (gnp
30、) and money supply (m2)gnp = 0 1 ln(m2) + uwe estimate the modelgnp = 16329.21 + 2584.785 ln(m2)se = (696.60) (94.0414)t = (-23.44) (27.49)n=15 r2=0.9831 adj-r2=0.9818 f=755.46remark:the slope means when money supply m2 increase 1%, the usa gnp gnp will increase 2584.785/100= 25.85hyperbolic model t
31、he hyperbolic model is like the followingy = 0 1 1/x + u where x is nonlinear with y, but y is still linear with the parameters, so the ols still work. but instead, we will take 1/x as a new independent variable. in the hyperbolic model, 0 is the asymptotic value or limited value of y.hyperbolic mod
32、el, cont.u = 0 1 1/xuwith different sign for the coefficient, the estimated equation will have different curve.xy001 00xy000average fixed cost functionengel expenditure curvephilips curvexy00, 1 0, so when unemployment rate increase, the income growth rate will decrease, which meet the theory.vtc= 0
33、 1 q + 2 q2 + 3 q3 + utcqcostv in order to best fit the data, polynomial model may be a good choice.v for example, we can use model the total cost function as polynomial regression.vjust now, we use the hyperbolic function to model the philips curve, now we use a polynomial function to remodel the p
34、hilips curve. now, we specify the model as y=0 1 x + 2 x2 + uvuse the same data in table 5-6, we estimate the polynomial model above. =23.53-7.24 x + 0.34 x2 se=(3.76) (1.54) (0.15) t = (6.26) (-4.71) (4.22) n=12 r2=0.8370 adj-r2=0.8228 f=23.11vusing hyperbolic model, estimation of the american philips curve is = -0.2594 +20.5879 1/x se=(1.0086) (4.6795) t = (-0.26) (4.40) n=12 r2=0.6594 adj-r2=0.6253
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年計算器及貨幣專用設備合作協(xié)議書
- 2025年棕、藤、草制品合作協(xié)議書
- 2025年壓力校驗器合作協(xié)議書
- 2025年高壓化成箔合作協(xié)議書
- 2022-2023學年山東省德州市夏津縣四年級(上)期末數(shù)學試卷
- 惠州惠東縣幼兒教師招聘幼兒考試試題及答案
- 滬教版四年級下冊數(shù)學小數(shù)的加減法測試題
- 歷年高級財務會計試題及部分答案
- 四年級下冊人教版數(shù)學教學計劃
- 2025年交通事故一次性終結賠償協(xié)議范文(2篇)
- 2025年魯泰集團招聘170人高頻重點提升(共500題)附帶答案詳解
- 2024-2025學年成都高新區(qū)七上數(shù)學期末考試試卷【含答案】
- 企業(yè)員工食堂管理制度框架
- 電力溝施工組織設計-電纜溝
- 2024年煤礦安全生產知識培訓考試必答題庫及答案(共190題)
- 《法律援助》課件
- 2024年山東鐵投集團招聘筆試參考題庫含答案解析
- (完整word版)中國銀行交易流水明細清單模版
- 軟件功能點估算.xls
- 燃氣輪機LM2500介紹
- (精選)淺談在小學數(shù)學教學中如何進行有效提問
評論
0/150
提交評論