博弈論復(fù)習(xí)題及答案_第1頁(yè)
博弈論復(fù)習(xí)題及答案_第2頁(yè)
博弈論復(fù)習(xí)題及答案_第3頁(yè)
博弈論復(fù)習(xí)題及答案_第4頁(yè)
博弈論復(fù)習(xí)題及答案_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、囚徒困境說(shuō)明個(gè)人的理性選擇不一定是集體的理性選擇。(,)子博弈精煉納什均衡不是一個(gè)納什均衡。(x )若一個(gè)博弈出現(xiàn)了皆大歡喜的結(jié)局,說(shuō)明該博弈是一個(gè)合作的正和博弈。()博弈中知道越多的一方越有利。(x)納什均衡一定是上策均衡。(x )上策均衡一定是納什均衡。(,)在一個(gè)博弈中只可能存在一個(gè)納什均衡。(x )在一個(gè)博弈中博弈方可以有很多個(gè)。(v)在一個(gè)博弈中如果存在多個(gè)納什均衡則不存在上策均衡。(,)在博弈中納什均衡是博弈雙方能獲得的最好結(jié)果。(x )在博弈中如果某博弈方改變策略后得益增加則另一博弈方得益減少。(x )上策均衡是帕累托最優(yōu)的均衡。(x )因?yàn)榱愫筒┺闹胁┺姆街g關(guān)系都是競(jìng)爭(zhēng)性的、

2、對(duì)立的,因此零和博弈就是非合 作博弈。(x)在動(dòng)態(tài)博弈中,因?yàn)楹笮袆?dòng)的博弈方可以先觀察對(duì)方行為后再選擇行為,因此總是有利的。(x)在博弈中存在著先動(dòng)優(yōu)勢(shì)和后動(dòng)優(yōu)勢(shì), 所以后行動(dòng)的人不一定總有利,例如:在 斯塔克伯格模型中,企業(yè)就可能具有先動(dòng)優(yōu)勢(shì)。囚徒的困境博弈中兩個(gè)囚徒之所以會(huì)處于困境,無(wú)法得到較理想的結(jié)果,是因?yàn)閮汕敉蕉疾辉诤踝螘r(shí)間長(zhǎng)短本身,只在乎不能比對(duì)方坐牢的時(shí)間更長(zhǎng)。(x)納什均衡即任一博弈方單獨(dú)改變策略都只能得到更小利益的策略組合。(,)不存在純戰(zhàn)略納什均衡和存在惟一的純戰(zhàn)略納什均衡, 作為原博弈構(gòu)成的有限次 重復(fù)博弈,共同特點(diǎn)是重復(fù)博弈本質(zhì)上不過(guò)是原博弈的簡(jiǎn)單重復(fù),重復(fù)博弈的子

3、博弈完美納什均衡就是每次重復(fù)采用原博弈的納什均衡。(,)多個(gè)純戰(zhàn)略納什均衡博弈的有限次重復(fù)博弈子博弈完美納什均衡路徑: 兩階段都 采用原博弈同一個(gè)純戰(zhàn)略納什均衡, 或者輪流采用不同純戰(zhàn)略納什均衡, 或者兩 次都采用混合戰(zhàn)略納什均衡,或者混合戰(zhàn)略和純戰(zhàn)略輪流采用。(,)如果階段博弈g=a1, a2,an; u1, u2,,un)具有多重nasm勻衡,那么可能(但 不必)存在重復(fù)博弈g(t)的子博弈完美均衡結(jié)局,其中對(duì)于任意的t<t,在t階段 的結(jié)局并不是gnasm勻衡。(v )(或:如果階段博弈g=a1, a2,an; u1, u2,un)具有多重nasm勻衡,那么ig重復(fù)博弈g(t)的子

4、博弈完美均衡結(jié)局,對(duì) 于任意的t<t,在t階段的結(jié)局一定是gnasm勻衡。)零和博弈的無(wú)限次重復(fù)博弈中,所有階段都不可能發(fā)生合作,局中人會(huì)一直重復(fù) 原博弈的混合戰(zhàn)略納什均衡。(,)(或:零和博弈的無(wú)限次重復(fù)博弈中,可能發(fā)生合作,局中人不一定會(huì)一直重復(fù)原博弈的混合戰(zhàn)略納什均衡。(x) 原博弈惟一的納什均衡本身是帕雷托效率意義上最佳戰(zhàn)略組合,符合各局中人最大利益:采用原博弈的純戰(zhàn)略納什均衡本身是各局中人能實(shí)現(xiàn)的最好結(jié)果,符合所有局中人的利益,因此,不管是重復(fù)有限次還是無(wú)限次,不會(huì)和一次性博弈有 區(qū)別。(,)原博弈惟一的納什均衡本身是帕雷托效率意義上最佳戰(zhàn)略組合, 符合各局中人最 大利益,但惟

5、一的納什均衡不是效率最高的戰(zhàn)略組合, 存在潛在合作利益的囚徒 困境博弈。(v )(或:原博弈惟一的納什均衡本身是帕雷托效率意義上最佳戰(zhàn)略組合,符合各局中人最大利益,不存在潛在合作利益的囚徒困境博弈。(x) 根據(jù)參與人行動(dòng)的先后順序,博弈可以劃分為靜態(tài)博弈 (static game)和動(dòng)態(tài)博 弈(dynamic game)。如果階段博弈gt唯一的nasm勻衡,那么對(duì)任意有限次t,重復(fù)博弈g(t)有唯一的 子博弈完美結(jié)局:在每一階段取gnas制衡策略。(,)1、無(wú)限次重復(fù)博弈與有限重復(fù)博弈的區(qū)別:a.b.c.無(wú)限次重復(fù)博弈沒(méi)有結(jié)束重復(fù)的確定時(shí)間。 在有限次重復(fù)博弈中, 存在最后一次重復(fù)正是破壞重復(fù)

6、博弈中局中人利益和行為的相互 制約關(guān)系,使重復(fù)博弈無(wú)法實(shí)現(xiàn)更高效率均衡的關(guān)鍵問(wèn)題。無(wú)限次重復(fù)博弈不能忽視不同時(shí)間得益的價(jià)值差異和貼現(xiàn)問(wèn)題, 必須考慮后一期得益的貼現(xiàn)系數(shù),對(duì)局中人和博弈均衡的分析必 須以平均得益或總得益的現(xiàn)值為根據(jù)。無(wú)限次重復(fù)博弈與有限次重復(fù)博弈的共同點(diǎn):試圖“合作”和懲 罰“不合作”是實(shí)現(xiàn)理想均衡的關(guān)鍵,是構(gòu)造高效率均衡戰(zhàn)略的 核心構(gòu)件。2,30,00,04,2(1)策略 甲:a 乙:a 博弈樹(shù)4、根據(jù)兩人博弈的支付矩陣回答問(wèn)題:aba b(1)寫出兩人各自的全部策略,并用等價(jià)的博弈樹(shù)來(lái)重新表示這個(gè)博弈(6分)找出該博弈的全部純策略納什均衡,并判斷均衡的結(jié)果是否是pareto

7、有效。 求出該博弈的混合策略納什均衡。(7分)bb(草圖如下:(2)pure ne (a, a); (b, b)都是pareto有效,僅(b, b)是k h有效。(3)mixed ne (2/5, 3/5); (2/3, 1/3) 5、用反應(yīng)函數(shù)法求出下列博弈的所有純戰(zhàn)略納什均衡參與人2a參與人b1cd解答:2,33,23,40,34,45,20,11,23,14,11,410,23,14,1-1,210,1abcd純策略納什均衡為(b, a)與(a, c)分析過(guò)程:設(shè)兩個(gè)參與人的行動(dòng)分別為 4和a2,playerl的反應(yīng)函數(shù) 尺(4)b,如果a2 ab,如果a2 ba,如果a2 cc或者d,

8、如果a2 dc,如果aiaplayer2的反應(yīng)函數(shù)r2(a1)a,如果aibc,如果a1cc,如果aid交點(diǎn)為(b, a)與(a, c),因此純策略納什均衡為(b, a)與(a, c)06、( entry deterrence市場(chǎng)威懾)考慮下面一個(gè)動(dòng)態(tài)博弈:首先,在一個(gè)市場(chǎng) 上潛在的進(jìn)入者選擇是否進(jìn)入,然后市場(chǎng)上的已有企業(yè)(在位者)選擇是否與新 企業(yè)展開(kāi)競(jìng)爭(zhēng)。在位者可能有兩種類型,溫柔型(左圖)和殘酷型(右圖) ,回 答下面問(wèn)題。進(jìn)入者進(jìn)入者20),25)右圖:殘酷型左圖:溫柔型(1)找出給定在位者的兩種類型所分別對(duì)應(yīng)的納什均衡,以及子博弈精煉納什均衡(12分)(2)已有企業(yè)為溫柔型的概率至少

9、多少時(shí),新企業(yè)才愿意進(jìn)入(8分)(1)溫柔 ne (in, accommodate)和 (out, fight) 。 spne 為(in,accommodate)殘酷 ne (out, fight). spne 同理 20p 10(1 p) 0 得至up 1/38、博弈方1和博弈方2就如何分10, 000元錢進(jìn)行討價(jià)還價(jià)。假設(shè)確定了以 下規(guī)則:雙方同時(shí)提出自己要求的數(shù)額 a和b, 0&a, b< 10, 000。如果a+b < 10, 000,則兩博弈方的要求得到滿足,即分別得 a和b,但如果a+b>10, 000,則該筆錢就沒(méi)收。問(wèn)該博弈的納什均衡是什么?如果你是其

10、中一個(gè)博弈方, 你會(huì)選擇什么數(shù)額?為什么?答十、納什均衡有無(wú)數(shù)個(gè)。最可能的結(jié)果是(5000, 5000)這個(gè)聚點(diǎn)均衡。9、北方航空公司和新華航空公司分享了從北京到南方冬天度假勝地的市場(chǎng)。如 果它們合作,各獲得500000元的壟斷利潤(rùn),但不受限制的競(jìng)爭(zhēng)會(huì)使每一方的利 潤(rùn)降至60000元。如果一方在價(jià)格決策方面選擇合作而另一方卻選擇降低價(jià)格, 則合作的廠商獲利將為零,競(jìng)爭(zhēng)廠商將獲利 900000元。(1)將這一市場(chǎng)用囚徒困境的博弈加以表示。(2)解釋為什么均衡結(jié)果可能是兩家公司都選擇競(jìng)爭(zhēng)性策略。答:(1)用囚徒困境的博弈表示如下表:北方航空公司合作新華航空公司合作500000, 5000000,

11、900000900000, 060000, 60000(2)如果新華航空公司選擇競(jìng)爭(zhēng),則北方航空公司也會(huì)選擇競(jìng)爭(zhēng)(60000>0); 若新華航空公司選擇合作,北方航空公司仍會(huì)選擇競(jìng)爭(zhēng)(900000>50000。若北 方航空公司選擇競(jìng)爭(zhēng),新華航空公司也將選擇競(jìng)爭(zhēng)(60000>0);若北方航空公司 選擇合作,新華航空公司仍會(huì)選擇競(jìng)爭(zhēng)(900000>0)。由于雙方總偏好競(jìng)爭(zhēng),故 均衡結(jié)果為兩家公司都選擇競(jìng)爭(zhēng)性策略,每一家公司所獲利潤(rùn)均為600000元。12、設(shè)啤酒市場(chǎng)上有兩家廠商,各自選擇是生產(chǎn)高價(jià)啤酒還是低價(jià)啤酒,相應(yīng)的利潤(rùn)(單位:萬(wàn)元)由下圖的得益矩陣給出:廠商b低價(jià) 高

12、價(jià)低價(jià)廠商a100, 80050, 5020, -30900, 600(1)有哪些結(jié)果是納什均衡?(2)兩廠商合作的結(jié)果是什么?答(1)(低價(jià),高價(jià)),(高價(jià),低價(jià))(2)(低價(jià),高價(jià))13、a、b兩企業(yè)利用廣告進(jìn)行競(jìng)爭(zhēng)。若 a、b兩企業(yè)都做廣告,在未來(lái)銷售中, a企業(yè)可以獲得20萬(wàn)元利潤(rùn),b企業(yè)可獲得8萬(wàn)元利潤(rùn);若a企業(yè)做廣告,b企 業(yè)不做廣告,a企業(yè)可獲得25萬(wàn)元利潤(rùn),b企業(yè)可獲得2萬(wàn)元利潤(rùn);若a企業(yè)不 做廣告,b企業(yè)做廣告,a企業(yè)可獲得10萬(wàn)元利潤(rùn),b企業(yè)可獲得12萬(wàn)元利潤(rùn); 若a、b兩企業(yè)都不做廣告,a企業(yè)可獲得30萬(wàn)元利潤(rùn),b企業(yè)可獲得6萬(wàn)元利 潤(rùn)。(1)畫出a、b兩企業(yè)的支付矩陣。

13、(2)求納什均衡。3.答:(1)由題目中所提供的信息,可畫出 a、b兩企業(yè)的支付矩陣(如下 表)。b企業(yè)做廣告不做廣告a企業(yè)做廣告20, 825, 2不做廣告10, 1230, 6(2)因?yàn)檫@是一個(gè)簡(jiǎn)單的完全信息靜態(tài)博弈,對(duì)于純策納什均衡解可運(yùn)用 劃?rùn)M線法求解。如果a廠商做廣告,則b廠商的最優(yōu)選擇是做廣告,因?yàn)樽鰪V告所獲得的利 潤(rùn)8大于不做廣告獲得的利潤(rùn)2,故在8下面劃一橫線。如果a廠商不做廣告, 則b廠商的最優(yōu)選擇也是做廣告,因?yàn)樽鰪V告獲得的利潤(rùn)為 12,而不做廣告的 利潤(rùn)為6,故在12下面劃一橫線。如果b廠商做廣告,則a廠商的最優(yōu)選擇是做廣告,因?yàn)樽鰪V告獲得的利潤(rùn) 20大于不做廣告所獲得的

14、利潤(rùn)10,故在20下面劃一橫線。如果b廠商不做廣告, a廠商的最優(yōu)選擇是不做廣告,因?yàn)椴蛔鰪V告獲得的利潤(rùn) 30大于做廣告所獲得 的禾i潤(rùn)25,故在30下面劃一橫線。在本題中不存在混合策略的納什均衡解, 因此,最終的純策略納什均衡就是 a、b兩廠商都做廣告。15、求出下面博弈的納什均衡(含純策略和混合策略)。乙lr5,00,82,4,5ud由劃線法易知,該矩陣博弈沒(méi)有純策略nash均衡。可得如下不等式組q=a+d-b-c=7,q=d-b=4,r=0+5-8-6=-9,r=-1可得混合策略nash均衡(1,8),( 4/)9 97 716、某產(chǎn)品市場(chǎng)上有兩個(gè)廠商,各自都可以選擇高質(zhì)量,還是低質(zhì)量。

15、相應(yīng)的 利潤(rùn)由如下得益矩陣給出:(1)該博弈是否存在納什均衡?如果存在的話,哪些結(jié)果是納什均衡?參考答案:由劃線法可知,該矩陣博弈有兩個(gè)純策略nash均衡,即(低質(zhì)量,高質(zhì)量),(高 質(zhì)量,低質(zhì)量)。高質(zhì)甲企量業(yè)低質(zhì)量該矩陣博弈還有一個(gè)混合的納什均衡50,50100,800900,600-20,-30乙企業(yè)高質(zhì)量 低質(zhì)量q=a+d-b-c= -970,q=d-b= -120,r= -1380尸-630,可得 x 12,y -6397138因此該問(wèn)題的混合納什均衡為(-,85),(-63-,5)97 97 138 138博弈關(guān)系。試求出該博弈的納什均衡。 益,可以采取什么措施?如果乙企業(yè)所在國(guó)政

16、府想保護(hù)本國(guó)企業(yè)利甲企 業(yè)-10,-10100,00,1000,00開(kāi)發(fā) 不開(kāi) 發(fā)乙企業(yè)開(kāi)發(fā) 不開(kāi)發(fā)解:用劃線法找出問(wèn)題的純策略納什均衡點(diǎn)10, 10 0,100所以可知該問(wèn)題有兩個(gè)純策略納什均衡點(diǎn)100,00,0(開(kāi)發(fā),不開(kāi)發(fā))和(不開(kāi)發(fā),開(kāi)發(fā))。該博弈還有一個(gè)混合的納什均衡(10,-),( -,-) 011 1111 11如果乙企業(yè)所在國(guó)政府對(duì)企業(yè)開(kāi)發(fā)新產(chǎn)品補(bǔ)貼a個(gè)單位,則收益矩陣變?yōu)?17、甲、乙兩企業(yè)分屬兩個(gè)國(guó)家,在開(kāi)發(fā)某種新產(chǎn)品方面有如下收益矩陣表示的10c100c°,要使(不開(kāi)發(fā),開(kāi)發(fā))成為該博弈的唯一納什均衡點(diǎn),只需0,100 a 0,0a>10。此時(shí)乙企業(yè)的收益

17、為100+a。18、博弈的收益矩陣如下表:乙左右甲上a, bc, d下e, fg, h(1)如果(上,左)是占優(yōu)策略均衡,則 a、b、c、d、e、f、g、h之間必 然滿足哪些關(guān)系?(盡量把所有必要的關(guān)系式都寫出來(lái))(2)如果(上,左)是納什均衡,則(1)中的關(guān)系式哪些必須滿足?(3)如果(上,左)是占優(yōu)策略均衡,那么它是否必定是納什均衡?為什么?(4)在什么情況下,純戰(zhàn)略納什均衡不存在?答:(1) a e, c g , b d , f h。本題另外一個(gè)思考角度是從占優(yōu)策略均衡的定義出發(fā)。對(duì)乙而言,占優(yōu)策略為(b,f) (d,h);而對(duì)甲而言,占優(yōu)策略為 (a,c) (e,g) o綜合起來(lái)可得到

18、所需結(jié)論。(2)納什均衡只需滿足:甲選上的策略時(shí),b d,同時(shí)乙選左的策略時(shí),a e 故本題中納什均衡的條件為:b d, a e。(3)占優(yōu)策略均衡一定是納什均衡,因?yàn)檎純?yōu)策略均衡的條件包含了納什 均衡的條件。(4)當(dāng)對(duì)每一方來(lái)說(shuō),任意一種策略組合都不滿足納什均衡時(shí),純戰(zhàn)略納 什均衡就不存在。19、smith和john玩數(shù)字匹配游戲,每個(gè)人選擇1、2、3,如果數(shù)字相同,john 給smith 3美元,如果不同,smith給john 1美元。(1)列出收益矩陣。(2)如果參與者以1/3的概率選擇每一個(gè)數(shù)字,證明該混合策略存在一個(gè) 納什均衡,它為多少?john選3的效用為:u3 j 3 1 : (

19、3)答:(1)此博弈的收益矩陣如下表。該博弈是零和博弈,無(wú)納什均衡。類似地,john選(1/3 ,1/3, 1/3)的混合概率時(shí),john123smith13, -3-1 ,1-1 ,12-1 ,1r 3,-3-1 ,13-1 ,1-1,13, -3(2) smith 選(1/3, 1/3, 1/3)的混合概率時(shí),-11(3)11333311111 -(3)-1一3333john選1的效用為:uijohn選2的效用為:u213smith 選1 的效用為:u1 3 3 3 ( 1) ( 1)smith選2的效用為:u2(1)(1)smith選3的效用為:1111u3-( 1)-( 1)-3-33

20、33因?yàn)?u1 u2 u3 , u1 u2 u3 ,所以:(1 1 1)(1 1 1)是納什均衡 策略值分別為john,u - , smith ' u , , / , , , / z'j-t j i i -j iv>j , /i、廣目 |j=l/j q,qj v/1 11 1 j,,1 j3333333320、假設(shè)雙頭壟斷企業(yè)的成本函數(shù)分別為:ci 20qi, c2 2q2,市場(chǎng)需求曲線為 p 400 2q ,其中,q qi q2。(1)求出古諾(cournot)均衡情況下的產(chǎn)量、價(jià)格和利潤(rùn),求出各自的反 應(yīng)和等利潤(rùn)曲線,并圖示均衡點(diǎn)。(2)求出斯塔克博格(stackel

21、berg )均衡情況下的產(chǎn)量、價(jià)格和利潤(rùn),并 以圖形表示。(3)說(shuō)明導(dǎo)致上述兩種均衡結(jié)果差異的原因。答:(1)對(duì)于壟斷企業(yè)1來(lái)說(shuō):max400 2(qi q2)qi 20qiqi190 q2這是壟斷企業(yè)1的反應(yīng)函數(shù)。其等利潤(rùn)曲線為:1 380qi2q1q2 2q?對(duì)壟斷企業(yè)2來(lái)說(shuō):max400 2(qi q2hq2 2q2q2 50 q14這是壟斷企業(yè)2的反應(yīng)函數(shù)。其等利潤(rùn)曲線為:2 400q2 2q1q2 4q2在達(dá)到均衡時(shí),有:19050 q14 qi 80q12q2 30均衡時(shí)的價(jià)格為:p 400 2 (80 30) 180兩壟斷企業(yè)的利潤(rùn)分別為:1 3808 02 8 03 02802

22、1 28002 400302 803043023600均衡點(diǎn)可圖示為:(2)當(dāng)壟斷企業(yè)1為領(lǐng)導(dǎo)者時(shí),企業(yè)2視企業(yè)1的產(chǎn)量為既定,其反應(yīng)函 數(shù)為:q250 qi /4則企業(yè)1的問(wèn)題可簡(jiǎn)化為:八qi ccmax 400 2 qi 50 qi 20qi4qi 280/3q280/3均衡時(shí)價(jià)格為:p 400 2 280 80i6033利潤(rùn)為:i 39200/3, 2 25600/9該均衡可用下圖表示:企業(yè)2領(lǐng)先時(shí)可依此類推。(3)當(dāng)企業(yè)i為領(lǐng)先者時(shí),其獲得的利潤(rùn)要比古諾競(jìng)爭(zhēng)下多。而企業(yè) 2獲 得的利潤(rùn)較少。這是因?yàn)?,企業(yè)i先行動(dòng)時(shí),其能考慮企業(yè)2的反應(yīng),并以此來(lái) 制定自己的生產(chǎn)計(jì)劃,而企業(yè)2只能被動(dòng)地

23、接受企業(yè)i的既定產(chǎn)量,計(jì)劃自己的 產(chǎn)出,這是一種“先動(dòng)優(yōu)勢(shì)”21、在一個(gè)由三寡頭操縱的壟斷市場(chǎng)中,逆需求函數(shù)為p=a-qi-q2-q 3,這里qi是企業(yè)i的產(chǎn)量。每一企業(yè)生產(chǎn)的單位成本為常數(shù) c。三企業(yè)決定各自產(chǎn)量的順序 如下:(1)企業(yè)1首先選擇qi>0; (2)企業(yè)2和企業(yè)3觀察到qi,然后同時(shí)分別 選if¥ q2和q30試解出該博弈的子博弈完美納什均衡。答:該博弈分為兩個(gè)階段,第一階段企業(yè)1選擇產(chǎn)量qi,第二階段企業(yè)2和3觀測(cè)到q1后,他們之間作一完全信息的靜態(tài)博弈。我們按照逆向遞歸法對(duì)博弈 進(jìn)行求解。(1)假設(shè)企業(yè)1已選定產(chǎn)量qb先進(jìn)行第二階段的計(jì)算。設(shè)企業(yè) 2, 3的

24、利潤(rùn)函 數(shù)分別為:2 (a q1 q2 q3)q2 cq23 (a q1 q2 q3)q2 cq3(d由于兩企業(yè)均要追求利潤(rùn)最大,故對(duì)以上兩式分別求一階條件:q1 2q2 q3 c 0q2q3求解(1)、(2)組成的方程組有:a q q2 2q3 c 0(2)(3)* a q1cq2 q33(2)現(xiàn)進(jìn)行第一階段的博弈分析:對(duì)與企業(yè)1,其利潤(rùn)函數(shù)為;1 (a q1將(3)代入可得:q2q3)q1cq1(4)1 q1(a q1 c)式(4)對(duì)q1求導(dǎo):a 2q1 c 0 q1解得:*q12(a c)(5)此時(shí),*112(a c)2(3)將式(5)代回(3)和*q1(4)1(a2有該博弈的子博弈完美

25、納什均衡:*c) , q2 q3 - (a c)625、某寡頭壟斷市場(chǎng)上有兩個(gè)廠商,總成本均為自身產(chǎn)量的20倍,市場(chǎng)需求函數(shù)為 q=200-r求(1)若兩個(gè)廠商同時(shí)決定產(chǎn)量,產(chǎn)量分別是多少?(2)若兩個(gè)廠商達(dá)成協(xié)議壟斷市場(chǎng),共同安排產(chǎn)量,則各自的利潤(rùn)情況如何?答:(1)分別求反應(yīng)函數(shù),180-2q1-q2=0, 180-q1-2q2=0, q1=q2=60(2) 200-2q=20, q=9q q1=q2=4526、一個(gè)工人給一個(gè)老板干活,工資標(biāo)準(zhǔn)是 100元。工人可以選擇是否偷懶,老 板則選擇是否克扣工資。假設(shè)工人不偷懶有相當(dāng)于50元的負(fù)效用,老板想克扣 工資則總有借口扣掉 60元工資,工人

26、不偷懶老板有150元產(chǎn)出,而工人偷懶 時(shí)老板只有80元產(chǎn)出,但老板在支付工資之前無(wú)法知道實(shí)際產(chǎn)出,這些情況雙 方都知道。請(qǐng)問(wèn):(1)如果老板完全能夠看出工人是否偷懶,博弈屬于哪種類型?用得益矩陣或 擴(kuò)展形表示該博弈并作簡(jiǎn)單分析。(2)如果老板無(wú)法看出工人是否偷懶,博弈屬于哪種類型?用得益矩陣或擴(kuò)展 形表示該博弈并作簡(jiǎn)單分析。(1)完全信息動(dòng)態(tài)博弈。(44), 40 (100. -50)(-10, 110)(50,博弈結(jié)果應(yīng)該是工人偷懶,老板克扣。(2)完全信息靜態(tài)博弈,結(jié)果仍然是工人偷懶,老板克扣老板克扣不克扣工人偷懶不偷慨20, 30900. 600100, 80050, 5028、給定兩家

27、釀酒企業(yè)a b的收益矩陣如下表:a企業(yè)白酒啤酒b企業(yè)白酒700, 600900, 1000啤酒800, 900600, 800表中每組數(shù)字前面一個(gè)表示 b企業(yè)的收益,后一個(gè)數(shù)字表示 b企業(yè)的收益。(1)求出該博弈問(wèn)題的均衡解,是占優(yōu)策略均衡還是納什均衡?(2)存在帕累托改進(jìn)嗎?如果存在,在什么條件下可以實(shí)現(xiàn)?福利增量是 多少?(3)如何改變上述a、b企業(yè)的收益才能使均衡成為納什均衡或占優(yōu)策略均 衡?如何改變上述a、b企業(yè)的收益才能使該博弈不存在均衡?答:(1)有兩個(gè)納什均衡,即(啤酒,白酒)、(白酒,啤酒),都是納什均 衡而不是占優(yōu)策略均衡。(2)顯然,(白酒,啤酒)是最佳均衡,此時(shí)雙方均獲得

28、其最大收益。若均 衡解為(啤酒,白酒),則存在帕累托改善的可能。方法是雙方溝通,共同做出 理性選擇,也可由一方向另一方支付報(bào)酬。福利由800+900變?yōu)?00+1000,增量為200。(3)如將(啤酒,白酒)支付改為(1000, 1100),則(啤酒,白酒)就成 為占優(yōu)策略均衡。比如將(啤酒,白酒)支付改為(800, 500),將(白酒,啤 酒)支付改為(900, 500),則該博弈就不存在任何占優(yōu)策略均衡或納什均衡。30、在納稅檢查的博弈中,假設(shè) a為應(yīng)納稅款,c為檢查成本,f是偷稅罰款, 且c<a+f s為稅務(wù)機(jī)關(guān)檢查的概率,e為納稅人逃稅的概率;不存在純戰(zhàn)略納 什均衡。(1)寫出支

29、付矩陣。(2)分析混合策略納什均衡。答:(1)該博弈的支付矩陣如下表:納稅人逃稅不逃稅稅收機(jī)關(guān)檢查a-c+f, -a-fa-c, -a不檢查0, 0a, -a(2)先分析稅收檢查邊際:因?yàn)?s為稅務(wù)機(jī)關(guān)檢查的概率,e為納稅人逃 稅的概率。給定e,稅收機(jī)關(guān)選擇檢查與否的期望收益為:k(1,e) (a c f)e (a c)(1 e) ef a ck(0,e) 0 e a(1 e) a(1 e)解 k(1,e) k(0,e),得:e c/(a f)。如果納稅人逃稅概率小于 e,稅收機(jī)關(guān)的最優(yōu)決策是不檢查,否則是檢查。再分析逃稅邊際:給定s,納稅人選擇逃稅與否的期望收益是:k(s,1) ( a f)

30、s 0 (1 s) (a f)sk(s,0)as ( a)(1 s) a解k(s,1) k(s,0),得:s a/(a f)。即如果稅收機(jī)關(guān)檢查的概率小于s,納稅人的最優(yōu)選擇是逃稅,否則是交稅。因此,混合納什均衡是(s, e),即稅收機(jī)關(guān)以s的概率查稅,而納稅人以 e的概率逃稅。34、假設(shè)古諾的雙寡頭模型中 雙寡頭面臨如下一條線性需求曲線:p=30-q _ _2 _ tr1 pq1 (30 q)q1 30q q; q1q2其中q為兩廠商的總產(chǎn)量,即q=g+q0 再假設(shè)邊際成本為零,即 mc=mc=0解釋并討論此例的納斯均衡,為什么其均衡是一種囚徒困境。廠商1的總收益tr由下式給出: _一 _2

31、 _ tri pqi (30 q)qi 30q qi q1q2廠商1的邊際收益mr為:mr=30-2q-q2利用利潤(rùn)最大化條件mf=mc=0,得廠商1的反應(yīng)函數(shù)(reaction function) 或反應(yīng)曲線為:q=15-0.5q2(6-1)同理可得廠商2的反應(yīng)曲線為:q=15-0.5q1(6-2)均衡產(chǎn)量水平就是兩反應(yīng)曲線交點(diǎn) q和q的值,即方程組6-1和6-2的解??梢郧蟮霉胖Z均衡時(shí)的均衡產(chǎn)量水平為:q=q=10。因此,在本例中,兩個(gè)寡頭的總產(chǎn)量 q為q+q=20,均衡彳格為p=30-q=1q剛才我們討論了兩寡頭廠商相互競(jìng)爭(zhēng)時(shí)的均衡產(chǎn)量?,F(xiàn)在我們放松第(6)條不能串謀的假設(shè),假定兩寡頭可

32、以串謀。它們能共同確定產(chǎn)量以使總利潤(rùn)最大化。這時(shí),兩廠商的總收益tr為:tr=pq=(30-q)q=30q-q其邊際收益mr為:mr=30-2q根據(jù)利潤(rùn)最大化條件 mr=mc=0可以求得當(dāng)q=15時(shí)總利潤(rùn)最大。如果兩廠商同 意平分利潤(rùn),每個(gè)寡頭廠商將各生產(chǎn)總產(chǎn)量的一半,即 q=q=7.5。其實(shí),任何 相加為15的產(chǎn)量q和q的組合都使總利潤(rùn)最大化,因此,把 q+q=15稱為契約 曲線,而q=q=7.5是契約曲線上的一個(gè)點(diǎn)。我們還可以求得當(dāng)價(jià)格等于邊際成本時(shí),q=q=15,各廠商的利潤(rùn)為零。35、兩家電視臺(tái)競(jìng)爭(zhēng)周末黃金時(shí)段晚8點(diǎn)到10點(diǎn)的收視率,可選擇把較好的節(jié)目 放在前面還是后面。他們決策的不同

33、組合導(dǎo)致收視率如下:電構(gòu)含1前面后面電it前面18. 1823,20臺(tái)2后面4t 2316,16(1)如果兩家是同時(shí)決策,有納什均衡嗎?有(前面,后面)電彳2臺(tái)1前mi后面電視 前血18, !823. 20f, j.1u, 1(51u1rl一后18. 1823> 204, 2216. 16g 2 fulfil(2)如果雙方采用規(guī)避風(fēng)險(xiǎn)的策略,均衡的結(jié)果是什么?此題應(yīng)用的思想是最大最小收益法:也就是說(shuō),在對(duì)手采取策略時(shí),所獲得的最小收益中的最大值。電視臺(tái)1:對(duì)方采取前面戰(zhàn)略的最小收益為18對(duì)方米取后面戰(zhàn)略的最小收益為16周電視臺(tái)1會(huì)選擇收益為18戰(zhàn)略一一前面電視臺(tái)2:前面的策略是一個(gè)優(yōu)超策

34、略一一前面策略均衡為(前面,前面)如果電視臺(tái)1先選擇,結(jié)果有什么?若電視臺(tái)2先選擇呢?電視臺(tái)1(18, 18)f / 、 b電視臺(tái)21(23, 4)電視臺(tái)2電視臺(tái)i許諾將好節(jié)目放在前面的許諾不可信。因?yàn)殡娨暸_(tái)2,前面為占優(yōu)策略,而在電視臺(tái)2 ,選擇前面的時(shí)候,電視臺(tái)1選擇后面的收益要大于前面的收益。所以,最終結(jié)果為(前面,后面)36、如果將如下的囚徒困境博弈重復(fù)進(jìn)行無(wú)窮次,懲罰機(jī)制為觸發(fā)策略,貼現(xiàn)因 子為6。試問(wèn)6應(yīng)滿足什么條件,才存在子博弈完美納什均衡?x坦 白不坦白坦白4,40,5不坦白5,01由劃線法求得該博弈的純策略納什均衡點(diǎn)為(不坦白,不坦白),均衡結(jié)果為(1,(1) 用觸發(fā)策略,局

35、中人i的策略組合s的最好反應(yīng)支付i(s) maxr(s i,si)=5,pi(s*)=4 , p(sc)=1。若存在子博弈完美納什均衡,必須滿 si si,*、足:i(s*) pi(sc) -,即只有當(dāng)貼現(xiàn)因子 >1/4時(shí),才存在子博弈完美i(s) pi(sc)5 14納什均衡。37、在bertrand價(jià)格博弈中,假定有n個(gè)生產(chǎn)企業(yè),需求函數(shù)為p=a-q,其中ph 市場(chǎng)價(jià)格,qtn個(gè)生產(chǎn)企業(yè)的總供給量。假定博弈重復(fù)無(wú)窮多次,每次的價(jià)格都 立即被觀測(cè)到,企業(yè)使用“觸發(fā)策略”(一旦某個(gè)企業(yè)選擇壟斷價(jià)格,則執(zhí)行“冷 酷策略”)。求使壟斷價(jià)格可以作為完美均衡結(jié)果出現(xiàn)的最低貼現(xiàn)因子6是多少。 并請(qǐng)

36、解釋6與n的關(guān)系。分析:此題可分解為3個(gè)步驟(1) n個(gè)企業(yè)合作,產(chǎn)量總和為壟斷產(chǎn)量,價(jià)格為壟斷價(jià)格,然后平分利潤(rùn)。(2)其中一個(gè)企業(yè)采取欺騙手段降價(jià),那個(gè)這家企業(yè)就占有的全部市場(chǎng),獲得壟斷利潤(rùn)(3)其他企業(yè)觸發(fā)戰(zhàn)略,將價(jià)格降到等于邊際成本,所有的企業(yè)利潤(rùn)為零。參考答案:(1)設(shè)每個(gè)企業(yè)的邊際成本為c,固定成本為0p=a-qtr=p*q=(a-q)*qmr=a-2q因?yàn)椋簃r=mca-2q=c則:q=(a-c)/2p=(a+c)/2兀=(p-c)*q=(a-c)2/4每家企業(yè)的利潤(rùn)為(a-c)2/4n(2)假設(shè)a企業(yè)自主降價(jià),雖然只是微小的價(jià)格調(diào)整,但足以占領(lǐng)整個(gè)市場(chǎng),獲得所有的壟斷利潤(rùn)一一(

37、a-c)2/4(3)其他企業(yè)在下一期采取冷酷策略,使得所有企業(yè)的利潤(rùn)為0考慮:a企業(yè)不降價(jià):(a-c)2/4n , (a-c)2/4n ,心業(yè)降價(jià):(a-c)2/4 , 0 , 使壟斷價(jià)格可以作為完美均衡結(jié)果,就要使得不降價(jià)的貼現(xiàn)值大于等于降價(jià)的貼 現(xiàn)值。設(shè)貼現(xiàn)因子為6的降價(jià)的貼現(xiàn)值:(a-c)2/4n1/(1-6)a竄價(jià)的現(xiàn)值:(a-c)2/4于是:(a-c)2/4n1/(1-5 ) > (a-c)2/4解得:5 > 1-1/n38、假設(shè)某勞動(dòng)市場(chǎng)為完全競(jìng)爭(zhēng)市場(chǎng),其供求函數(shù)如下:sl:w=120+2ldl:w=360-l已知某廠商(在完全競(jìng)爭(zhēng)市場(chǎng)下)的生產(chǎn)函數(shù)為f(l,k)=10

38、l 0.5/5 (k=100)且其產(chǎn)品的需求與供給函數(shù)分別為d:p=60-2q s: p=20+2q試求(a)該廠商的ac l,mc l及vmp l各為多少?(b)勞動(dòng)工資為多少?廠商會(huì)雇用多少勞動(dòng)?由:sl=dl 解得:w=280由于產(chǎn)品市場(chǎng)為完全競(jìng)爭(zhēng)市場(chǎng),且要素市場(chǎng)也為完全競(jìng)爭(zhēng)市場(chǎng)所以,滿足:產(chǎn)品市場(chǎng)均衡:p=mr=mc=w/mp要素市場(chǎng)均衡:w= a(l=m(l=vmp得到:ac=mc=vmp=280由:d=s單得:p= 40, q=10廠商追求利潤(rùn)最大化的情況下:0.5w*=vmpl=p*mpl=p*50/ll*=100/2*pw* 2=51 (取整數(shù))1 .試計(jì)算表1中的戰(zhàn)略式博弈的

39、重復(fù)剔除劣戰(zhàn)略均衡表1 一個(gè)戰(zhàn)略式表述博弈1,23,12,45,67,12,63,12,07,8bumdlmr對(duì)b而言,戰(zhàn)略m嚴(yán)格劣于r;(因?yàn)?<4, 1<6,0<8),因此剔除b的戰(zhàn)略m;構(gòu)成新的博弈如下blru1,22,4m5,62,6d3,17,8在新的博弈中,對(duì)于a而言,戰(zhàn)略u(píng)嚴(yán)格劣于d(因?yàn)?<3,2<7),因此剔除a的戰(zhàn)略u(píng),構(gòu) 成新的博弈如下:5,62,63,17,8blrmd對(duì)于新的博弈中,已經(jīng)沒(méi)有嚴(yán)格的劣戰(zhàn)略,因此沒(méi)有嚴(yán)格的劣戰(zhàn)略可以剔除 所以該博弈不是重復(fù)剔除 嚴(yán)格劣戰(zhàn)略可解的。但是存在弱劣戰(zhàn)略。對(duì)于b而言,戰(zhàn)略l弱劣于r (因?yàn)?=6, 1

40、<8),因此b剔除b的弱劣戰(zhàn)略l,構(gòu)成新的博弈如下:m a d在新的博弈中,對(duì)于a而言,戰(zhàn)略m嚴(yán)格劣于d (因?yàn)?<7),因此剔除a 的戰(zhàn)略m ,構(gòu)成新的博弈如下:brd 7,8 a因此,重復(fù)剔除(弱)劣戰(zhàn)略均衡為(d, r)(ps:如果同學(xué)們用劃線的方法求納什均衡,就可以發(fā)現(xiàn)純戰(zhàn)略nash均衡有 兩個(gè):(m,l)和(d,r)但采用剔除弱劣戰(zhàn)略的方法,把其中一個(gè)納什均衡剔除 掉了)2 .試給出下述戰(zhàn)略式表述博弈的所有納什均衡。2給定1選才u u, 給定1選才¥ d, 給定2選才? l, 給定2選才? r,u1d2的最佳選擇是2的最佳選擇是1的最佳選擇是1的最佳選擇是2,2

41、3,34,41,2lrr(因?yàn)?<3),在相應(yīng)位置劃線l (因?yàn)?>2),在相應(yīng)位置劃線d (理由自己寫),在相應(yīng)位置劃線u (理由自己寫),在相應(yīng)位置劃線找兩個(gè)數(shù)字下都劃線的,顯然有兩個(gè)純戰(zhàn)略納什均衡:(u,r)和(d,l)據(jù)wilson的奇數(shù)定理,可能有一個(gè)混合戰(zhàn)略均衡。設(shè)1選u的概率為,那么選d的概率為1設(shè)2選l的概率為,那么選r的概率為1如果存在混合戰(zhàn)略,那么2選戰(zhàn)略l和r的期望收益應(yīng)該應(yīng)該相等,因此應(yīng)有ul 24(1) ur 32(1)?自己求解 (2分) 同樣,1選戰(zhàn)略u(píng)和d的期望收益應(yīng)該應(yīng)該相等 uu 23(1) ud 41(1)?得混合土§衡:?3 .市場(chǎng)里有兩個(gè)企業(yè)1和2。每個(gè)企業(yè)的成本都為0o市場(chǎng)的逆需求函數(shù)為 p=16-q。其中p是市場(chǎng)價(jià)格,q為市場(chǎng)總產(chǎn)量。(1)求古諾(cournot)均衡產(chǎn)量和利潤(rùn)。(2)求斯坦克爾伯格(stac

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論