高三數學(文)一輪復習課時跟蹤訓練:第八章立體幾何課時跟蹤訓練43Word版含解析(精編版)_第1頁
高三數學(文)一輪復習課時跟蹤訓練:第八章立體幾何課時跟蹤訓練43Word版含解析(精編版)_第2頁
高三數學(文)一輪復習課時跟蹤訓練:第八章立體幾何課時跟蹤訓練43Word版含解析(精編版)_第3頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、高效復習課時跟蹤訓練 (四十三 ) 基礎鞏固 一、選擇題1若平面 平面 ,直線 a平面 ,點 b ,則在平面 內且過 b 點的所有直線中 ()a 不一定存在與a 平行的直線b只有兩條與 a 平行的直線c存在無數條與a 平行的直線d存在唯一與 a 平行的直線 解析當直線 a 在平面 內且經過 b 點時,可使 a平面 ,但這時在平面 內過 b 點的所有直線中, 不存在與 a 平行的直線, 而在其他情況下,都可以存在與a 平行的直線,故選a. 答案a2(2017 ·湖南長郡中學質檢 )如圖所示的三棱柱abc a1b1c1 中,過 a1b1 的平面與平面 abc 交于 de,則 de 與 a

2、b 的位置關系是 ()a 異面b平行c相交d以上均有可能 解析在三棱柱 abc a1b1c1 中,aba1b1,ab?平面 abc, a1b1?平面 abc, a1b1平面 abc,過 a1b1 的平面與平面abc交于 de. dea1b1, de ab. 答案b3 (2016 ·吉林長春二中模擬 )在空間中,設 m,n 是不同的直線, , 是不同的平面,且m?,n?,則下列命題正確的是()a 若 m n,則 b. 若 m,n 異面,則 c若 m,n 相交,則 ,相交 d若 m n,則 解析 若 m n,則 與 平行或相交,故 a 錯誤;若 m, n 異面,則 ,平行或相交,故 b

3、錯誤;若 m,n 相交,則 ,一定有公共點,即相交,故 c 正確;若 m n,則 與 可以平行、相交, 故 d 錯誤 答案c4設 a, b 是兩條直線, ,是兩個不同的平面,則的一個充分條件是 ()a 存在一條直線a, a,a b存在一條直線a, a?,a c. 存在兩條平行直線a, b,a?, b?,a , b d存在兩條異面直線 a, b,a?, b? ,a , b 解析對于 a ,兩個平面還可以相交,若,則存在一條直線 a, a ,a,所以 a 是 的一個必要條件;同理,b 也是 的一個必要條件; 易知 c 不是 的一個充分條件, 而是一個必要條件;對于 d,可以通過平移把兩條異面直線平

4、移到一個平面中,成為相交直線,則有 ,所以 d 是 的一個充分條件 答案d5(2017 ·全國卷 )如圖,在下列四個正方體中,a,b 為正方體的兩個頂點, m,n, q為所在棱的中點,則在這四個正方體中,直 線 ab 與平面 mnq 不平行的是 () 解析 解法一:對于選項 b,如圖所示,連接 cd,因為 ab cd, m, q 分別是所在棱的中點,所以 mqcd,所以 ab mq, 又 ab?平面 mnq ,mq? 平面 mnq,所以 ab平面 mnq.同理可證選項 c,d 中均有 ab平面 mnq.故選 a.解法二:對于選項 a,設正方體的底面對角線的交點為 o(如圖所示),連接

5、 oq,則 oqab,因為 oq 與平面 mnq 有交點,所以ab 與平面 mnq 有交點,即 ab 與平面 mnq 不平行,故選a. 答案a6如圖,在正方體abcda1b1c1d1 中,棱長為 a,m、n 分別為 a b 和 ac 上的點, a man2a,則 mn 與平面 bb c c 的位置11311關系是()a 相交c垂直b平行d不能確定 解析連接 cd1、ad1,在 cd1 上取點 p,使 d1p 2a,連接3mp、np, mp bc,pn ad1bc1, mp平面bb1c1c, pn平面 bb1c1c,平面 mnp平面 bb1c1c, mn平面 bb1c1c. 答案b二、填空題7

6、(2017 ·廣東順德質檢)如圖所示,四棱錐p abcd的底面是一直角梯形, abcd,ba ad,cd 2ab,pa底面 abcd,e 為pc 的中點,則 be 與平面 pad 的位置關系為 解析取 pd 的中點 f,連接 ef、af,在 pcd 中, ef 綊1cd. 2又 ab cd 且 cd 2ab, ef 綊 ab,四邊形 abef 是平行四邊形, eb af.又 eb?平面 pad, af?平面 pad, be平面 pad. 答案平行8棱長為 2 的正方體 abcd a1b1c1d1 中,m 是棱 aa1 的中點,過 c, m, d1 作正方體的截面,則截面的面積是 解析

7、由面面平行的性質知截面與面ab1 的交線 mn 是 aa1b的中位線,所以截面是梯形cd mn,易求其面積為 912. 答案929已知正方體 abcda1b1c1d1 的棱長為 1,點 p 是面 aa1d1d的中心,點q是 b1d1 上一點,且pq面 ab1,則線段pq長為 解析連接 ab1、ad1,點 p 是平面 aa1d1d 的中心,點 p 是 ad1 的中點, pq平面 ab1, pq?平面 d1ab1,平面 d1ab1平面 ab1ab1, pq ab1, pq1ab 2.2122 答案2三、解答題10(2017 ·浙江卷改編 )如圖,已知四棱錐 p abcd, pad 是以

8、ad 為斜邊的等腰直角三角形, bc ad,ad 2cb,e 為 pd 的中點證明: ce平面 pab. 證明如圖,設 pa 中點為 f,連接 ef,fb.因為 e, f 分別為1pd, pa 中點,所以 efad 且 ef2ad,2又因為 bcad,bc 1ad,所以 efbc 且 efbc,即四邊形 bcef 為平行四邊形,所以 cebf,因為 ce?平面 pab, bf? 平面 pab,因此 ce平面 pab.能力提升 11(2016 ·云南檢測 )如圖,在三棱錐 sabc 中, abc 是邊長為 6 的正三角形, sa sbsc 15,平面 defh 分別與 ab,bc, s

9、c, sa 交于 d, e,f, h,且 d, e 分別是 ab,bc 的中點,如果直線 sb平面 defh ,那么四邊形defh 的面積為 ()45a. 2b.4532c 44d453 解析 取 ac 的中點 g,連接 sg,bg.易知 sgac,bg ac, 故ac平面 sgb,所以 acsb.因為 sb平面 defh ,sb? 平面 sab,平面 sab 平面 defh hd ,則 sb hd.同理 sb fe.又 d,e 分別1為 ab,bc 的中點,則 h,f 也為 as,sc 的中點,從而得 hf 綊2ac綊 de,所以四邊形 defh 為平行四邊形因為acsb,sbhd , de

10、 ac,所以de hd,所以四邊形defh為矩形,其面積s1145hf·hd 2ac ·2sb 2 . 答案a12如圖, 正方體 abcda1b1c1d1 的棱長為 1,線段 b1d1 上有1兩個動點 e、f,且 ef 2,則下列結論中錯誤的是()a ac beb ef平面 abcdc. 三棱錐 abef 的體積為定值d. aef 的面積與 bef 的面積相等 解析由 ac平面 dbb1d1 可知 ac be.故 a 正確ef bd, ef?平面 abcd,bd?平面 abcd,知 ef平面 abcd,故 b 正確a 到平面 bef 的距離即為 a 到平面 dbb d的距離

11、為2,且 s1121bef 2bb1×ef定值,故 va bef 為定值,即 c 正確61 aef 的面積為故 d 錯誤 答案d8 , bef 的面積為4,兩三角形面積不相等,13(2017 ·湖南十三校聯考 )過三棱柱 abc a1b1c1 的任意兩條棱的中點作直線,其中與平面abb1a1 平行的直線共有 條 解析記 ac,bc, a1c1,b1c1 的中點分別為e, f, e1, f1, 則直線 ef, e1f1,ee1,ff1,e1f, ef1 均與平面 abb1a1 平行,故符合題意的直線共有6 條 答案614. 如圖,在正四棱柱abcda1b1c1d1 中, e、

12、f、g、h 分別是棱 cc1、c1d1、d1d、dc 的中點, n 是 bc 的中點,點 m 在四邊形efgh及其內部運動,則當m滿足條件b1bdd1. 時,有 mn平面 解析因為平面 nhf 平面 b1bdd1,所以當 m 點滿足在線段fh 上,有 mn平面 b1bdd 1. 答案m線段 fh15. 如圖, 幾何體 e abcd 是四棱錐, abd 為正三角形, cb cd,bcd120°,m 為線段 ae 的中點,求證: dm 平面 bec. 證明證法一:如圖 1,延長 ad,bc 交于點 f,連接 ef.因為 cb cd, bcd120°, 所以 cbd 30

13、6;.因為 abd 為正三角形,所以 bad60°, abc 90°, 因此 afb30°,所以 ab2af.1又 ab ad,所以 d 為線段 af 的中點連接 dm,由點 m 是線段 ae 的中點,因此 dm ef.又 dm ?平面 bec,ef?平面 bec,所以 dm平面 bec.證法二:如圖2,取 ab 的中點 n,連接 dm ,dn, mn, 因為 m 是 ae 的中點,所以 mn be.又 mn?平面 bec,be?平面 bec, 所以 mn平面 bec.又因為 abd 為正三角形, 所以 bdn 30°,又 cb cd, bcd 120&

14、#176;,因此 cbd 30°,所以 dnbc.又 dn?平面 bec, bc?平面 bec,所以 dn平面 bec.又 mndn n,故平面 dmn 平面 bec, 又 dm ? 平面 dmn,所以 dm平面 bec.16. 如圖所示, 平面 平面 ,點 a,c ,點 b,d ,點 e,f 分別在線段 ab,cd 上,且 aeeb cffd .求證:ef . 證明若 ab 與 cd 共面,如圖 1 所示,圖 1 aeeb cffd , ac efbd, 又 ef?,bd?, ef.若 ab 與 cd 異面,如圖 2 所示,連接 ac,bd, ad,過 e 點作 eg bd,交 a

15、d 于 g 點,連接gf,則 ae eb aggd.圖 2 eg?, bd?, eg . aeeb cffd , aggd cffd , gfac, gf?, ac?, gf , , gf , eg、gf?平面 efg, eg gf g,平面 efg ,又 ef?平面 efg, ef.延伸拓展 一個多面體的直觀圖及三視圖如圖所示(其中 m、n 分別是 af、bc 的中點)(1) 求證: mn平面 cdef;(2) 求多面體 acdef 的體積 解(1)證明:由已知得此多面體為直三棱柱 取 bf 的中點 g,連接 mg、ng,由 m、n 分別為 af、bc 的中點可得 ng cf,mg ef,n

16、g平面 cdef, mg平面 cdef,又 ngmg g,可得平面 mng平面 cdef, 又 mn?平面 mng, mn平面 cdef.2.(2)由三視圖可知abbc bf 2, de cf22, cbf取 de 的中點 h,連接 ah. adae, ah de,又在直三棱柱ade bcf 中, 平面 ade平面 cdef,平面 ade平面 cdef de. ah平面 cdef.多面體 acdef 是以 ah 為高,以矩形cdef 為底面的棱錐,易得 ah2.s 矩形 cdef de·ef42,棱錐 a cdef 的體積為v 1·s3矩形 cdef·ah 13&

17、#215; 42×283.合理分配高考數學答題時間找準目標,惜時高效合理分配高考數學答題時間經過漫長的第一、第二輪復習, 對于各知識點的演練同學們已經爛熟于心,我們把這稱為戰(zhàn)術上的純熟。臨近高考,在短短不到50 天的時間里,怎樣讓成績再上一個臺階? 靠戰(zhàn)術上的硬拼儼然很快就會碰到瓶頸,此刻, 同學們更需要的是戰(zhàn)略上的調整,在實力一定的情況,科學地分配答題時間,是做一個成功的應試者必備的戰(zhàn)略技巧?!拔覀兠看慰荚嚨臅r候都做不完,尤其后面的兩道大題都沒有時間看?!背3B牭酵瑢W們痛苦地抱怨。高考,作為一場選拔性考試,它必然存在一定的難度梯度。就我省的高 考數學卷而言,可以按“16/3/3原則

18、” 將其分為三大部分,即客觀題(16 道)、簡易解答題(解答題前3 題)與壓軸題(解答題后3 題)。學會合理分配這三個部分的答題時間,可以讓考生以從容不迫的心態(tài)面對考試,亦可從最優(yōu)化的角度幫助考生掙分。一般而言,我們建議用 40 分鐘左右的時間解決前面的客觀題(選擇填空題) ,再用剩下的時間應對解答題。但正如沒有一個放之四海皆準的戰(zhàn)略一樣,考試時間的合理分配也不可用一條標準劃定,時間的分配需要結合自身的具體實力。在考試前,考生需要量身設定自己的考試目標,再選擇不同戰(zhàn)略戰(zhàn)術。對于基礎比較薄弱的同學,重在保簡易題。 鑒于客觀題部分主要是對基礎知識點的考察,可以稍稍放慢速度,把時間控制在50-60 分鐘,力求做到準確細致,盡量保證70 分的基礎分不丟分。之后的三道簡易解答題每題平均花10-15 分鐘完成 。至于后三道大題, 建議先閱讀完題目,根據題意把可以聯想到的常考知識點寫出來,例如涉及函數單調性、切線斜率的可對函數求導,圓錐曲線的設出標準方程、數列里求出首項等等。如果沒有其它的思路,不要耽誤太多時間,把剩下的時間倒回去檢查前面的題目。對于目標分數在100-120 之間的同學,在保證正確率的情況下,客觀題盡量在40分鐘內完成。簡易解答題每道應控制在每道題10 分鐘左右解決。對于倒數第三題,是壓軸部分相對容易的一題15 分鐘內盡可能多的寫出解題內容,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論