培優(yōu)專題12全等三角形及其應(yīng)用含答案_第1頁
培優(yōu)專題12全等三角形及其應(yīng)用含答案_第2頁
培優(yōu)專題12全等三角形及其應(yīng)用含答案_第3頁
培優(yōu)專題12全等三角形及其應(yīng)用含答案_第4頁
培優(yōu)專題12全等三角形及其應(yīng)用含答案_第5頁
已閱讀5頁,還剩6頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、全等三角形及其應(yīng)用【知識精讀】1. 全等三角形的定義:能夠完全重合的兩個三角形叫全等三角形;兩個全等三角形中,互相重合的頂點叫做對應(yīng)頂點。互相重合的邊叫對應(yīng)邊,互相重合的角叫對應(yīng)角。2. 全等三角形的表示方法:若ABC和ABC是全等的三角形,記作 “ABCABC其中,“”讀作“全等于”。記兩個三角形全等時,通常把表示對應(yīng)頂點的字母寫在對應(yīng)的位置上。3. 全等三角形的的性質(zhì):全等三角形的對應(yīng)邊相等,對應(yīng)角相等;4. 尋找對應(yīng)元素的方法(1)根據(jù)對應(yīng)頂點找如果兩個三角形全等,那么,以對應(yīng)頂點為頂點的角是對應(yīng)角;以對應(yīng)頂點為端點的邊是對應(yīng)邊。通常情況下,兩個三角形全等時,對應(yīng)頂點的字母都寫在對應(yīng)的位

2、置上,因此,由全等三角形的記法便可寫出對應(yīng)的元素。(2)根據(jù)已知的對應(yīng)元素尋找全等三角形對應(yīng)角所對的邊是對應(yīng)邊,兩個對應(yīng)角所夾的邊是對應(yīng)邊;(3)通過觀察,想象圖形的運動變化狀況,確定對應(yīng)關(guān)系。通過對兩個全等三角形各種不同位置關(guān)系的觀察和分析,可以看出其中一個是由另一個經(jīng)過下列各種運動而形成的。翻折 如圖(1),DBOCDEOD,DBOC可以看成是由DEOD沿直線AO翻折180得到的;旋轉(zhuǎn) 如圖(2),DCODDBOA,DCOD可以看成是由DBOA繞著點O旋轉(zhuǎn)180得到的;平移 如圖(3),DDEFDACB,DDEF可以看成是由DACB沿CB方向平行移動而得到的。5. 判定三角形全等的方法:(

3、1)邊角邊公理、角邊角公理、邊邊邊公理、斜邊直角邊公理(2) 推論:角角邊定理6. 注意問題:(1)在判定兩個三角形全等時,至少有一邊對應(yīng)相等;(2)不能證明兩個三角形全等的是,a: 三個角對應(yīng)相等,即AAA;b :有兩邊和其中一角對應(yīng)相等,即SSA。全等三角形是研究兩個封閉圖形之間的基本工具,同時也是移動圖形位置的工具。在平面幾何知識應(yīng)用中,若證明線段相等或角相等,或需要移動圖形或移動圖形元素的位置,常常需要借助全等三角形的知識?!痉诸惤馕觥咳热切沃R的應(yīng)用(1) 證明線段(或角)相等 例1:如圖,已知AD=AE,AB=AC.求證:BF=FC分析:由已知條件可證出ACDABE,而BF和F

4、C分別位于DBF和EFC中,因此先證明ACDABE,再證明DBFECF,既可以得到BF=FC.證明:在ACD和ABE中, ACDABE (SAS) B=C(全等三角形對應(yīng)角相等)又 AD=AE,AB=AC. ABAD=ACAE 即 BD=CE在DBF和ECF中 DBFECF (AAS) BF=FC (全等三角形對應(yīng)邊相等)(2)證明線段平行例2:已知:如圖,DEAC,BFAC,垂足分別為E、F,DE=BF,AF=CE.求證:ABCD分析:要證ABCD,需證CA,而要證CA,又需證ABFCDE.由已知BFAC,DEAC,知DECBFA=90,且已知DE=BF,AF=CE.顯然證明ABFCDE條件

5、已具備,故可先證兩個三角形全等,再證CA,進一步證明ABCD.證明: DEAC,BFAC (已知) DECBFA=90 (垂直的定義)在ABF與CDE中, ABFCDE(SAS) CA (全等三角形對應(yīng)角相等) ABCD (內(nèi)錯角相等,兩直線平行)(3)證明線段的倍半關(guān)系,可利用加倍法或折半法將問題轉(zhuǎn)化為證明兩條線段相等例3:如圖,在 ABC中,AB=AC,延長AB到D,使BD=AB,取AB的中點E,連接CD和CE. 求證:CD=2CE分析:()折半法:取CD中點F,連接BF,再證CEBCFB.這里注意利用BF是ACD中位線這個條件。證明:取CD中點F,連接BF BF=AC,且BFAC (三角

6、形中位線定理) ACB2 (兩直線平行內(nèi)錯角相等)又 AB=AC ACB3 (等邊對等角) 32在CEB與CFB中, CEBCFB (SAS) CE=CF=CD (全等三角形對應(yīng)邊相等)即CD=2CE ()加倍法證明:延長CE到F,使EF=CE,連BF.在AEC與BEF中,AECBEF (SAS) AC=BF, 43 (全等三角形對應(yīng)邊、對應(yīng)角相等) BFAC (內(nèi)錯角相等兩直線平行) ACB+CBF=180o,ABC+CBD=180o,又AB=AC ACB=ABCCBF=CBD (等角的補角相等)在CFB與CDB中, CFBCDB (SAS) CF=CD即CD=2CE說明:關(guān)于折半法有時不在

7、原線段上截取一半,而利用三角形中位線得到原線段一半的線段。例如上面折道理題也可這樣處理,取AC中點F,連BF(如圖)(B為AD中點是利用這個辦法的重要前提),然后證CE=BF.(4)證明線段相互垂直例4:已知:如圖,A、D、B三點在同一條直線上,ADC、BDO為等腰三角形,AO、BC的大小關(guān)系和位置關(guān)系分別如何?證明你的結(jié)論。分析:本題沒有直接給出待證的結(jié)論,而是讓同學(xué)們先根據(jù)已知條件推斷出結(jié)論,然后再證明所得出的結(jié)論正確。通過觀察,可以猜測:AO=BC,AOBC.證明:延長AO交BC于E,在ADO和CDB中 ADOCDB (SAS) AO=BC, OAD=BCD(全等三角形對應(yīng)邊、對應(yīng)角相等

8、) AODCOE (對頂角相等) COE+OCE=90o AOBC5、中考點撥:例1如圖,在ABC中,ABAC,E是AB的中點,以點E為圓心,EB為半徑畫弧,交BC于點D,連結(jié)ED,并延長ED到點F,使DFDE,連結(jié)FC求證:FA分析:證明兩個角相等,常證明這兩個角所在的兩個三角形全等,在已知圖形中A、F不在全等的兩個三角形中,但由已知可證得EFAC,因此把A通過同位角轉(zhuǎn)到BDE中的BED,只要證EBDFCD即可證明:ABAC,ACBB,EBED,ACBEDBEDACBEDABEEABDCD又DEDF,BDECDFBDECDF,BEDFFA說明:證明角(或線段)相等可以從證明角(或線段)所在的

9、三角形全等入手,在尋求全等條件時,要注意結(jié)合圖形,挖掘圖中存在的對項角、公共角、公共邊、平行線的同位角、內(nèi)錯角等相等的關(guān)系。例2 如圖,已知 ABC為等邊三角形,延長BC到D,延長BA到E,并且使AE=BD,連接CE、DE.求證:EC=ED 分析:把已知條件標注在圖上,需構(gòu)造和AEC全等的三角形,因此過D點作DFAC交BE于F點,證明AECFED即可。證明:過D點作DFAC交BE于F點 ABC為等邊三角形 BFD為等邊三角形 BF=BD=FD AE=BD AE=BF=FD AEAF=BFAF 即 EF=AB EF=AC在 ACE和DFE中, AECFED(SAS) EC=ED(全等三角形對應(yīng)邊

10、相等)題型展示:例1 如圖,ABC中,C2B,12。求證:ABACCD分析:在AB上截取AEAC,構(gòu)造全等三角形,AEDACD,得DEDC,只需證DE BE問題便可以解決證明:在AB上截取AEAC,連結(jié)DE AEAC,12,ADAD, AEDACD, DEDC,AEDC AEDBEDB,C2B, 2BBEDB即 BEDB EBED,即EDDC, ABACDC剖析:證明一條線段等于另外兩條線段之和的常用方法有兩種,一種是截長法(即在長線段上截取一段等于兩條短線段的一條,再證余下的部分等于另一條短線段);如作AEAC是利用了角平分線是角的對稱軸的特性,構(gòu)造全等三角形,另一種方法是補短法(即延長一條

11、短線段等于長線段,再證明延長的部分與另一條短線段相等),其目的是把證明線段的和差轉(zhuǎn)化為證明線段相等的問題,實際上仍是構(gòu)造全等三角形,這種轉(zhuǎn)化圖形的能力是中考命題的重點考查的內(nèi)容【實戰(zhàn)模擬】1. 下列判斷正確的是( )(A)有兩邊和其中一邊的對角對應(yīng)相等的兩個三角形全等(B)有兩邊對應(yīng)相等,且有一角為30的兩個等腰三角形全等(C)有一角和一邊對應(yīng)相等的兩個直角三角形全等(D)有兩角和一邊對應(yīng)相等的兩個三角形全等2. 已知:如圖,CDAB于點D,BEAC于點E,BE、CD交于點O,且AO平分BAC求證:OBOC3. 如圖,已知C為線段AB上的一點,DACM和DCBN都是等邊三角形,AN和CM相交于

12、F點,BM和CN交于E點。求證:DCEF是等邊三角形。4.如圖,在ABC中,AD為BC邊上的中線求證:AD(AB+AC) 5. 如圖,在等腰RtABC中,C90,D是斜邊上AB上任一點,AECD于E,BFCD交CD的延長線于F,CHAB于H點,交AE于G求證:BDCG【試題答案】1. D2.證明: AO平分ODB,CDAB于點D,BEAC于點E,BE、CE交于點O, ODOE,ODBOEC90, BODCOE。 BODCOE(ASA)OBOC3. 分析 由ACM=BCN=60,知ECF=60,欲證DCEF是等邊三角形,只要證明DCEF是等腰三角形。先證DCANDMCB,得1=2.再證DCFND

13、CEB,即可推得DCEF是等邊三角形的結(jié)論。證明:在DCAN和DMCB,AC=MC,CN=CB,CAN=MCB=120,DACNDMCB中, FCB和DCEB中,F(xiàn)CN=ECB=60,1=2,CN=CB,DCFNDCEB,CF=CE,又ECF=60, DCEF是等邊三角形.4. 分析: 關(guān)于線段不等的問題,一般利用在同一個三角形中三邊關(guān)系來討論,由于AB、AC、AD不在同一個三角形,應(yīng)設(shè)法將這三條線段轉(zhuǎn)化在同一個三角形中,也就是將線段相等地轉(zhuǎn)化,而轉(zhuǎn)化的通常方法利用三角形全等來完成,注意AD是BC邊上的中線,延長AD至E,使DEAD,即可得到ACDEBD證明:延長AD到E,使DEAD,連結(jié)BE在DACD與DEBD中 DACDDEBD(SAS) ACEB(全等三角形對應(yīng)邊相等)在DABE中,ABEBAE(三角形兩邊之和大于第三邊) ABAC2AD(等量代換) 說明:一般在有中點的條件時,考慮延長中線來構(gòu)造全等三角形。5.分析:由于B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論