集合之間的關(guān)系_第1頁
集合之間的關(guān)系_第2頁
集合之間的關(guān)系_第3頁
集合之間的關(guān)系_第4頁
集合之間的關(guān)系_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、 1.3 集合之間的關(guān)系南京市女子中專南京市女子中專 熊珺熊珺 講解新課:講解新課:vA A表示江蘇區(qū)域表示江蘇區(qū)域 ,B B表示中國區(qū)域表示中國區(qū)域vA A-1-1,1 1 ,B B-1-1,0 0,1 1,2 2vA A N N ,B B R R vA Ax|xx|x為南京人,為南京人,B Bx|xx|x為中國人為中國人思考:每組中的集合思考:每組中的集合A和和B都具有什么關(guān)都具有什么關(guān)系?共同點在哪里?系?共同點在哪里?集合集合A A的每個元素都在集合的每個元素都在集合B B中中子集的概念:子集的概念:如果如果集合集合A的任意一個元素都是集合的任意一個元素都是集合B的元素的元素(若(若

2、,則,則 ),則稱集合),則稱集合A是集合是集合B的子集,記為的子集,記為 ,讀,讀作作“集合集合A包含于集合包含于集合B”;或者記為;或者記為 ,讀作,讀作“集合集合B包含包含集合集合A”。AaBa BA AB 用用Venn圖來表示:圖來表示:BA當(dāng)當(dāng)AB時時思考:思考: 與與能否同時成立?能否同時成立? BAAB 分析分析概念的理解:概念的理解:(1)“A是是B的子集的子集”的含義是:集合的含義是:集合A中的任何一中的任何一 個元素個元素都是集合都是集合B中的元素。中的元素。例如:例如:A1,2,3 B2,3,4,5A不是不是B的子集,的子集,B也不是也不是A的子集。的子集。(2)任何一個

3、集合都是任何一個集合都是它本身的子集它本身的子集。(3)空集是任何集合的子集。)空集是任何集合的子集。例例1. 寫出集合寫出集合a,b的所有子集。的所有子集。解:集合解:集合a,b的所有子集是:的所有子集是:a, b, a,b,注意不要漏了!真子集如果如果 ,并且,并且 ,這時集合,這時集合A稱為集合稱為集合B的真的真子集,記作子集,記作“ ”,或,或“ ”。BABABA AB 用用Venn圖來表示:圖來表示:AB特別地,特別地, 是任何非空集是任何非空集合的真子集。合的真子集。注意:注意:例例2. 下列各組的三個集合中,哪兩個集合之間具有包含下列各組的三個集合中,哪兩個集合之間具有包含關(guān)系?

4、關(guān)系? (1)2,2,1 , 1,2, 1 ,0, 1,2BAS(2),0,0,RxxxBRxxxARS(3)S Sx|xx|x為地球人,為地球人,A Ax|xx|x為中國人,為中國人,B Bx|xx|x為為外國人外國人用用Venn圖來表示:圖來表示:ABSSAB課堂練習(xí):課堂練習(xí):1. 寫出集合寫出集合a,b,c的所有子集,并指出哪些是真子集。的所有子集,并指出哪些是真子集。2. 集合集合Ax|x為菱形,為菱形,Bx|x為平行四邊形,為平行四邊形,Cx|x是正方是正方形,指出形,指出A,B,C之間的關(guān)系,并用之間的關(guān)系,并用Venn圖畫出示意圖。圖畫出示意圖。3. 已知:已知:Ax|yx2-2x+1,By|yx2-2x+1, Cx|x2-2x+1=0,D(x,y)|y=x2-2x+1,E(x,y)|x2-2x+1=0,y為實為實數(shù)。請判斷這五個集合的包含關(guān)系。數(shù)。請判斷這五個集合的包含關(guān)系。4. 已知:已知:Ax|x2,Bx|4x+p0,若,若A包含包含B,求實數(shù),求實數(shù)p的取值范圍

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論