2016屆高考數(shù)學(xué)二輪復(fù)習(xí)專題強(qiáng)化練:專題15+圓錐曲線(人教版含解析)_第1頁
2016屆高考數(shù)學(xué)二輪復(fù)習(xí)專題強(qiáng)化練:專題15+圓錐曲線(人教版含解析)_第2頁
2016屆高考數(shù)學(xué)二輪復(fù)習(xí)專題強(qiáng)化練:專題15+圓錐曲線(人教版含解析)_第3頁
2016屆高考數(shù)學(xué)二輪復(fù)習(xí)專題強(qiáng)化練:專題15+圓錐曲線(人教版含解析)_第4頁
2016屆高考數(shù)學(xué)二輪復(fù)習(xí)專題強(qiáng)化練:專題15+圓錐曲線(人教版含解析)_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、 2016高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題15 圓錐曲線一、選擇題1(2015·四川文,7)過雙曲線x21的右焦點(diǎn)且與x軸垂直的直線,交該雙曲線的兩條漸近線于A,B兩點(diǎn),則|AB|()A.B2C6D4答案D解析由題意,a1,b,故c2,漸近線方程為y±x,將x2代入漸近線方程,得y1,2±2,故|AB|4,選D.2設(shè)P是橢圓1上一點(diǎn),M、N分別是兩圓:(x2)2y21和(x2)2y21上的點(diǎn),則|PM|PN|的最小值,最大值分別為()A4,8B2,6C6,8D8,12答案A解析如圖,由橢圓及圓的方程可知兩圓圓心分別為橢圓的兩個(gè)焦點(diǎn),由橢圓定義知|PA

2、|PB|2a6,連接PA,PB,分別與兩圓相交于M、N兩點(diǎn),此時(shí)|PM|PN|最小,最小值為|PA|PB|2R4;連接PA,PB并延長,分別與兩圓相交于M、N兩點(diǎn),此時(shí)|PM|PN|最大,最大值為|PA|PB|2R8,即最小值和最大值分別為4、8.方法點(diǎn)撥涉及橢圓(或雙曲線)兩焦點(diǎn)距離的問題或焦點(diǎn)弦問題,及到拋物線焦點(diǎn)(或準(zhǔn)線)距離的問題,可優(yōu)先考慮圓錐曲線的定義3(文)(2015·唐山一模)已知拋物線的焦點(diǎn)F(a,0)(a<0),則拋物線的標(biāo)準(zhǔn)方程是()Ay22axBy24axCy22axDy24ax答案B解析設(shè)拋物線方程為y2mx,由焦點(diǎn)為F(a,0),a<0知m&l

3、t;0,a,m4a,故選B.(理)(2015·河北衡水中學(xué)一模)已知拋物線C的頂點(diǎn)是原點(diǎn)O,焦點(diǎn)F在x軸的正半軸上,經(jīng)過F的直線與拋物線C交于A、B兩點(diǎn),如果·12,那么拋物線C的方程為()Ax28yBx24yCy28xDy24x答案C解析由題意,設(shè)拋物線方程為y22px(p>0),直線方程為xmy,代入拋物線方程得y22pmyp20,設(shè)A(x1,y1)、B(x2,y2),得·x1x2y1y2y1y2m2y1y2(y1y2)y1y2p212p4,即拋物線C的方程為y28x.方法點(diǎn)撥求圓錐曲線標(biāo)準(zhǔn)方程時(shí)“先定型,后計(jì)算”,即先確定是何種曲線,焦點(diǎn)在哪個(gè)軸上,然

4、后利用條件求a、b、p的值4(文)(2015·南昌市一模)以坐標(biāo)原點(diǎn)為對稱中心,兩坐標(biāo)軸為對稱軸的雙曲線C的一條漸近線的傾斜角為,則雙曲線C的離心率為()A2或B2或C.D2答案B解析(1)當(dāng)雙曲線的焦點(diǎn)在x軸上時(shí),由題意知雙曲線C:1(a>0,b>0)的漸近線方程為y±x,所以tan,所以ba,c2a,故雙曲線C的離心率e2;(2)當(dāng)雙曲線的焦點(diǎn)在y軸上時(shí),由題意知雙曲線C:1(a>0,b>0)的漸近線方程為y±x,所以tan,所以ab,c2b,故雙曲線C的離心率e.綜上所述,雙曲線C的離心率為2或.(理)(2015·東北三省三

5、校二模)已知雙曲線1(a>0,b>0)的左右焦點(diǎn)分別為F1、F2,以F1F2為直徑的圓被直線1截得的弦長為a,則雙曲線的離心率為()A3B2 C. D.答案D解析由已知得:O(0,0)到直線1的距離為:d,由題意得:2d2r2即22c2整理得:c4a2c2a40,即e4e210,解得:e22或e2(舍),e.方法點(diǎn)撥1.求橢圓、雙曲線的離心率問題,關(guān)鍵是根據(jù)已知條件確定a、b、c的關(guān)系,然后將b用a、c代換,求e的值;另外要注意雙曲線的漸近線與離心率的關(guān)系2注意圓錐曲線的對稱性在解題中的應(yīng)用5(文)設(shè)F1、F2分別是橢圓E:x21(0<b<1)的左、右焦點(diǎn),過F1的直線

6、l與橢圓相交于A、B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列,則|AB|的長為()A.B1 C. D.答案C解析由條件知,|AF2|BF2|2|AB|,|AF1|AF2|BF1|BF2|2,|AB|AF2|BF2|4,|AB|.(理)(2014·河北名師名校俱樂部模擬)設(shè)拋物線x28y的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),PAl,A為垂足,如果直線AF的傾斜角等于60°,那么|PF|等于()A2B4 C.D4答案C解析在APF中,|PA|PF|,|AF|sin60°4,|AF|,又PAFPFA30°,過P作PBAF于B,則|PF|.方法點(diǎn)撥圓

7、錐曲線的性質(zhì)常與等差、等比數(shù)列、三角函數(shù)、不等式等問題聯(lián)系在一起,一般先利用條件轉(zhuǎn)化為單一知識點(diǎn)的問題求解6(文)從拋物線y28x上一點(diǎn)P引拋物線準(zhǔn)線的垂線,垂足為M,且|PM|5,設(shè)拋物線的焦點(diǎn)為F,則PFM的面積為()A5B6 C10D5答案A解析拋物線的焦點(diǎn)F(2,0),準(zhǔn)線方程為x2.設(shè)P(m,n),則|PM|m25,解得m3.代入拋物線方程得n224,故|n|2,則SPFM|PM|·|n|×5×25.(理)若雙曲線1(a>0,b>0)和橢圓1(m>n>0)有共同的焦點(diǎn)F1、F2,P是兩條曲線的一個(gè)交點(diǎn),則|PF1|·|P

8、F2| ()Am2a2 B. C.(ma) D. ma答案D解析不妨設(shè)F1、F2分別為左、右焦點(diǎn),P在雙曲線的右支上,由題意得|PF1|PF2|2,|PF1|PF2|2,|PF1|,|PF2|,故|PF1|·|PF2|ma.7(文)(2015·湖南文,6)若雙曲線1的一條漸近線經(jīng)過點(diǎn)(3,4),則此雙曲線的離心率為()A. B. C. D.答案D解析考查雙曲線的幾何性質(zhì)由題設(shè)利用雙曲線的漸近線方程經(jīng)過的點(diǎn)(3,4),得到a、b關(guān)系式,然后求出雙曲線的離心率即可因?yàn)殡p曲線1的一條漸近線經(jīng)過點(diǎn)(3,4),3b4a,9(c2a2)16a2,e,故選D.(理)(2015·

9、重慶文,9)設(shè)雙曲線1(a>0,b>0)的右焦點(diǎn)是F,左、右頂點(diǎn)分別是A1,A2,過F作A1A2的垂線與雙曲線交于B,C兩點(diǎn)若A1BA2C,則該雙曲線的漸近線的斜率為()A±B± C±1D±答案C解析考查雙曲線的幾何性質(zhì)由已知得右焦點(diǎn)F(c,0)(其中c2a2b2,c>0),A1(a,0),A2(a,0);B(c,),C(c,);從而A1B(ca,),(ca,),又因?yàn)锳1BA2C,所以A1B·A2C0,即(ca)·(ca)()·()0;化簡得到1±1,即雙曲線的漸近線的斜率為±1;故選

10、C.8(2015·新課標(biāo)理,5)已知M(x0,y0)是雙曲線C:y21上的一點(diǎn),F(xiàn)1,F(xiàn)2是C的兩個(gè)焦點(diǎn)若·<0,則y0的取值范圍是()A. B.C. D.答案A解析考查向量數(shù)量積;雙曲線的標(biāo)準(zhǔn)方程由題知F1(,0),F(xiàn)2(,0),y1,所以MF1·MF2(x0,y0)·(x0,y0)xy33y10,解得y0,故選A.二、填空題9(文)已知直線ya交拋物線yx2于A、B兩點(diǎn),若該拋物線上存在點(diǎn)C,使得ACB為直角,則a的取值范圍為_答案a1解析顯然a>0,不妨設(shè)A(,a),B(,a),C(x0,x),則(x0,ax),(x0,ax),ACB9

11、0°.·(x0,ax)·(x0,ax)0.xa(ax)20,且xa0.(ax)(ax1)0,ax10.xa1,又x0.a1.(理)如圖,正方形ABCD和正方形DEFG的邊長分別為a、b(a<b),原點(diǎn)O為AD的中點(diǎn),拋物線y22px(p>0)經(jīng)過C、F兩點(diǎn),則_.答案1解析由題可得C(,a),F(xiàn)(b,b),C、F在拋物線y22px上,1,故填1.10(文)(2015·湖南理,13)設(shè)F是雙曲線C:1的一個(gè)焦點(diǎn)若C上存在點(diǎn)P,使線段PF的中點(diǎn)恰為其虛軸的一個(gè)端點(diǎn),則C的離心率為_答案解析考查雙曲線的標(biāo)準(zhǔn)方程及其性質(zhì)根據(jù)對稱性,不妨設(shè)F(c,0)

12、,短軸端點(diǎn)為(0,b),從而可知點(diǎn)(c,2b)在雙曲線上,1e.(理)(2015·南昌市二模)過原點(diǎn)的直線l與雙曲線C:1(a>0,b>0)的左右兩支分別相交于A,B兩點(diǎn),F(xiàn)(,0)是雙曲線C的左焦點(diǎn),若|FA|FB|4,·0,則雙曲線C的方程是_答案y21解析由已知得:c,F(xiàn)AFB,設(shè)右焦點(diǎn)為F1,則四邊形FAF1B為矩形,|AB|2c2且|FA|2|FB|2(|FA|FB|)22|FA|·|FB|162|FA|·|FB|,|AB|2|FA|2|FB|2,|FA|·|FB|2,(|FA|FB|)2(|FA|FB|)24|FA|&#

13、183;|FB|8,|FA|FB|2,即|AF|AF1|2,a,b21,雙曲線標(biāo)準(zhǔn)方程為y21.三、解答題11(文)(2015·湖南文,20)已知拋物線C1:x24y的焦點(diǎn)F也是橢圓C2:1(a>b>0)的一個(gè)焦點(diǎn),C1與C2的公共弦的長為2.過點(diǎn)F的直線l與C1相交于A,B兩點(diǎn),與C2相交于C,D兩點(diǎn),且與同向(1)求C2的方程;(2)若|AC|BD|,求直線l的斜率分析考查直線與圓錐曲線的位置關(guān)系;橢圓的性質(zhì)和轉(zhuǎn)化思想,設(shè)而不求、整體代換思想及運(yùn)算求解能力等(1)由F也是橢圓C2的一個(gè)焦點(diǎn)及C1與C2的公共弦長列方程組求解;(2) 設(shè)A(x1,y1),B(x2,y2)

14、,C(x3,y3),D(x4,y4),根據(jù),可得,(x3x4)24x3x4(x1x2)24x1x2,設(shè)直線l的斜率為k,則l的方程為ykx1,聯(lián)立直線與拋物線方程、直線與橢圓方程、利用韋達(dá)定理進(jìn)行計(jì)算即可得到結(jié)果解析(1)由C1:x24y知其焦點(diǎn)F的坐標(biāo)為(0,1),因?yàn)镕也是橢圓C2的一個(gè)焦點(diǎn),所以a2b21 ;又C1與C2的公共弦長為2,C1與C2都關(guān)于y軸對稱,且C1的方程為:x24y,由此易知C1與C2的公共點(diǎn)的坐標(biāo)為(±,),1,聯(lián)立得a29,b28,故C2的方程為1.(2)如圖,設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4), 因與同向,且|AC

15、|BD|,所以,從而x3x1x4x2,即x3x4x1x2,于是(x3x4)24x3x4(x1x2)24x1x2設(shè)直線l的斜率為k,則l的方程為ykx1,由得x24kx40,由x1,x2是這個(gè)方程的兩根,x1x24k,x1x24由得(98k2)x216kx640,而x3,x4是這個(gè)方程的兩根,x3x4,x3x4 將、代入,得16(k21).即16(k21),所以(98k2)216×9,解得k±,即直線l的斜率為±.(理)(2015·洛陽市期末)已知橢圓C:1(a>b>0)的離心率為,一個(gè)焦點(diǎn)與拋物線y24x的焦點(diǎn)重合,直線l:ykxm與橢圓C相

16、交于A,B兩點(diǎn)(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)O為坐標(biāo)原點(diǎn),kOA·kOB,判斷AOB的面積是否為定值?若是,求出定值,若不是,說明理由解析(1)由題意得c1,又e,所以a2,從而b2a2c23,所以橢圓C的標(biāo)準(zhǔn)方程為1.(2)設(shè)點(diǎn)A(x1,y1),B(x2,y2),由得(34k2)x28mkx4(m23)0,由(8mk)216(34k2)(m23)>0得m2<34k2.x1x2,x1·x2,y1·y2(kx1m)·(kx2m)k2x1x2mk(x1x2)m2.由kOA·kOB得y1y2x1x2,即·,化簡得2m24k2

17、3,滿足>0.由弦長公式得|AB|x1x2|·.又點(diǎn)O到直線l:ykxm的距離d,所以SAOB·d·|AB|·,故AOB的面積為定值.12(文)(2014·東北三校二模)已知圓M:x2(y2)21,直線l:y1,動圓P與圓M相外切,且與直線l相切設(shè)動圓圓心P的軌跡為E.(1)求E的方程;(2)若點(diǎn)A,B是E上的兩個(gè)動點(diǎn),O為坐標(biāo)原點(diǎn),且·16,求證:直線AB恒過定點(diǎn)解析(1)O的圓心M(0,2),半徑r1,設(shè)動圓圓心P(x,y),由條件知|PM|1等于P到l的距離,|PM|等于P到直線y2的距離,P點(diǎn)軌跡是以M(0,2)為焦點(diǎn),

18、y2為準(zhǔn)線的拋物線方程為x28y.(2)設(shè)直線AB:ykxb,A(x1,y1),B(x2,y2)將直線AB的方程代入到x28y中得x28kx8b0,所以x1x28k,x1x28b,又因?yàn)?#183;x1x2y1y2x1x28bb216b4所以直線BC恒過定點(diǎn)(0,4)(理)(2014·山東理,21)已知拋物線C:y22px(p>0)的焦點(diǎn)為F,A為C上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)A的直線l交C于另一點(diǎn)B,交x軸的正半軸于點(diǎn)D,且有|FA|FD|.當(dāng)點(diǎn)A的橫坐標(biāo)為3時(shí),ADF為正三角形(1)求C的方程;(2)若直線l1l,且l1和C有且只有一個(gè)公共點(diǎn)E,()證明:直線AE過定點(diǎn),并求

19、出定點(diǎn)坐標(biāo);()ABE的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由解析(1)由題意知F(,0),設(shè)D(t,0)(t>0),則FD的中點(diǎn)為(,0)因?yàn)閨FA|FD|,由拋物線的定義知3|t|,解得t3p或t3(舍去),由3,解得p2.所以拋物線C的方程為y24x.(2)()由(1)知F(1,0)設(shè)A(x0,y0)(x0y00),D(xD,0)(xD>0),因?yàn)閨FA|FD|,得|xD1|x01,由xD>0得xDx02,故D(x02,0)故直線AB的斜率kAB.因?yàn)橹本€l1和直線AB平行,設(shè)直線l1的方程為yxb,代入拋物線方程得y2y0,由題意0,得b,設(shè)E

20、(xE,yE),則yE,xE.當(dāng)y4時(shí),kAE,可得直線AE的方程為yy0(xx0),由y4x0,整理可得y(x1),故直線AE恒過點(diǎn)F(1,0)當(dāng)y4時(shí),直線AE的方程為x1,過點(diǎn)F(1,0)所以直線AE過定點(diǎn)F(1,0)()由()知直線AE過焦點(diǎn)F(1,0),所以|AE|AF|FE|(x01)(1)x02.設(shè)直線AE的方程為xmy1,因?yàn)辄c(diǎn)A(x0,y0)在直線AE上,故m.設(shè)B(x1,y1)直線AB的方程為yy0(xx0),由于y00,可得xy2x0,代入拋物線方程得y2y84x00.所以y0y1,可求得y1y0,x1x04.所以點(diǎn)B到直線AE的距離為d4()則ABE的面積S×

21、4()(x02)16,當(dāng)且僅當(dāng)x0,即x01時(shí)等號成立所以ABE的面積的最小值為16.方法點(diǎn)撥定點(diǎn)問題的求解策略把直線或曲線方程中的變量x、y當(dāng)作常數(shù)看待,把方程一端化為零,既然直線或曲線過定點(diǎn),那么這個(gè)方程就要對任意參數(shù)都成立,這時(shí)參數(shù)的系數(shù)就要全部等于零,這樣就得到一個(gè)關(guān)于x、y的方程組,這個(gè)方程組的解所確定的點(diǎn)就是直線或曲線所過的定點(diǎn)13(文)(2014·甘肅省三診)已知橢圓C:1(a>b>0)的離心率為,以原點(diǎn)O為圓心,橢圓的短半軸長為半徑的圓與直線xy0相切(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若直線l:ykxm與橢圓C相交于A、B兩點(diǎn),且kOA·kOB,試

22、判斷AOB的面積是否為定值?若為定值,求出定值;若不為定值,說明理由解析(1)由題意知e,e2,即a2b2,又b,a24,b23,故橢圓的方程為1.(2)設(shè)A(x1,y1),B(x2,y2),由得(34k2)x28mkx4(m23)0,64m2k216(34k2)(m23)>0,34k2m2>0.x1x2,x1·x2.y1·y1(kx1m)·(kx2m)k2x1x2mk(x1x2)m2.kOA·kOB,y1y2x1x2,·2m24k23,|AB|.d,S|AB|d.方法點(diǎn)撥定值問題的求解策略(1)在解析幾何中,有些幾何量與參數(shù)無關(guān),

23、這就是“定值”問題,解決這類問題常通過取特殊值,先確定“定值”是多少,再進(jìn)行證明,或者將問題轉(zhuǎn)化為代數(shù)式,再證明該式是與變量無關(guān)的常數(shù),或者由該等式與變量無關(guān),令其系數(shù)等于零即可得到定值(2)求解定值問題的三個(gè)步驟由特例得出一個(gè)值,此值一般就是定值;證明定值,有時(shí)可直接證明定值,有時(shí)將問題轉(zhuǎn)化為代數(shù)式,可證明該代數(shù)式與參數(shù)(某些變量)無關(guān);也可令系數(shù)等于零,得出定值;得出結(jié)論(理)橢圓C:1(a>b>0)的離心率e,ab3.(1)求橢圓C的方程;(2)如圖,A、B、D是橢圓C的頂點(diǎn),P是橢圓C上除頂點(diǎn)外的任意一點(diǎn),直線DP交x軸于點(diǎn)N,直線AD交BP于點(diǎn)M,設(shè)BP的斜率為k,MN的

24、斜率為m,證明:2mk為定值解析(1)因?yàn)閑,所以ac,bc.代入ab3得,c,a2,b1.故橢圓的方程為y21.(2)方法一:因?yàn)锽(2,0),P不為橢圓頂點(diǎn),則直線BP的方程為yk(x2)(k0,k±)代入y21,解得P(,)直線AD的方程為:yx1.與聯(lián)立解得M(,),由D(0,1),P(,),N(x,0)三點(diǎn)共線知,解得N(,0)所以MN的斜率為m,則2mkk(定值)(2)方法二:設(shè)P(x0,y0)(x00,±2),則k,直線AD的方程為:y(x2)直線BP的方程為y(x2),直線DP的方程為:y1x,令y0,由于y01可得N(,0)聯(lián)立解得M(,),因此MN的斜率

25、為m,所以2mk(定值)14(文)(2015·遼寧葫蘆島市一模)設(shè)橢圓C:1(a>b>0)的左焦點(diǎn)為F,離心率為,過點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長為.(1)求橢圓C的方程;(2)直線l:ykxt(t0)與橢圓C交于M、N兩點(diǎn),線段MN的垂直平分線與y軸交點(diǎn)P,求MON(O為坐標(biāo)原點(diǎn))面積的最大值解析(1)e,a23c23a23b2,2a23b2將xc代入橢圓方程得:y2,y±,由題意:,2ab2 ,解得:a23,b22橢圓C的方程為:1(2)聯(lián)立方程組:消去y整理得:(3k22)x26ktx3t26036k2t24(3k22)·(3t26)2

26、4(3k22t2)>0,3k22>t2設(shè)M(x1,y1),N(x2,y2),則x1,x2是方程的兩個(gè)解,由韋達(dá)定理得:x1x2, y1y2k(x1x2)2t2t設(shè)MN的中點(diǎn)為G(x0,y0),則x0,y0線段MN的垂直平分線方程為:y將P代入得:化簡得:3k224t代入式得:4t>t2,0<t<4|MN|····設(shè)O到直線MN的距離為d,則dSNOM·|MN|·d·····(當(dāng)且僅當(dāng)t2,k±時(shí)取“”號)MON面積的最大值為,此時(shí)直線l的方程為:

27、y±x2.(理)(2015·浙江理,19)已知橢圓y21上兩個(gè)不同的點(diǎn)A,B關(guān)于直線ymx對稱(1)求實(shí)數(shù)m的取值范圍;(2)求AOB面積的最大值(O為坐標(biāo)原點(diǎn))分析考查直線與橢圓的位置關(guān)系;點(diǎn)到直線的距離公式;求函數(shù)的最值及運(yùn)算求解能力、函數(shù)與方程的思想(1)可設(shè)出直線AB的方程,與橢圓方程聯(lián)立消元化為一元二次方程,由AB的中點(diǎn)在已知直線上知方程有兩個(gè)不同的解,由此可得到關(guān)于m的不等式,從而求解;(2)令t,可將AOB表示為t的函數(shù),從而將問題等價(jià)轉(zhuǎn)化為在給定范圍上求函數(shù)的最值,從而獲解解析(1)由題意知m0,可設(shè)直線AB的方程為yxb,由消去y,得()x2xb210,直線yxb與橢圓y21有兩個(gè)不同的交點(diǎn),2b220,將AB中點(diǎn)M(,)代入直線方程ymx解得b,.由得m或m.(2)令t(,0)(0,),則|AB|·,且O到直線AB的距離為d,設(shè)AOB的面積為S(t),S(t)|AB|·d,當(dāng)且僅當(dāng)t2時(shí),等號

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論