概率論與隨機過程題集_第1頁
概率論與隨機過程題集_第2頁
概率論與隨機過程題集_第3頁
概率論與隨機過程題集_第4頁
概率論與隨機過程題集_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、第二章 概率論與隨機過程2-16 圖P2-16中的電路輸入為隨機過程X(t),且EX(t)=0,() =(),即X(t)為白噪過程。(a)試求譜密度(f)。(b)試求()和EY(t)。CRY(t)X(t)圖P2-16解:(a)= 又系統(tǒng)函數(shù)= (b) = =2-20 一離散時間隨機過程的自相關序列函數(shù)是,試求其功率密度譜。解:由功率密度譜的定義知 即為所求。2-23 試證明函數(shù) ,= 0,在區(qū)間上為正交的,即所以,抽樣定理的重建公式可以看作帶限信號的級數(shù)展開式,其中權值為的樣值,且是級數(shù)展開式中的正交函數(shù)集。證明: 由題得 命題得證。2-24 系統(tǒng)的噪聲等效帶寬定義為式中,。利用該定義,試確定

2、圖P2-12中的理想帶通濾波器和圖P2-16中的低通系統(tǒng)的噪聲等效帶寬。CRY(t)X(t)BB 圖P2-12 圖P2-16解:(1) 對于圖P2-12有 圖P2-12的系統(tǒng)的等效帶寬為B (2) 對于圖P2-16有 = =第三章 信源編碼3-4 X、Y是兩個離散隨機變量,其概率為P(X=x, Y=y)=P(x, y)證明:I(X,Y),當且僅當X和Y統(tǒng)計獨立時等號成立。證明: 0, 當且僅當X和Y統(tǒng)計獨立時 此時, 3-5 某DMS信源輸出由可能的字符,組成,其發(fā)生概率分別是,。證明信源熵至多是。證明: 由熵定義可知 ; 又 1 又 0 當且僅當 時等號成立。3-11 設和是兩個聯(lián)合分布的離

3、散隨機變量 (a)證明: (b) 利用上述結果證明: 在什么情況下上式的等號成立? (c) 證明: 當且僅當和獨立時上式等號成立。證明:(a) 由離散隨機變量的邊緣概率可知 同理可知: (b) = 當=1時,等號成立。 (c) 由3-4的結論可知: 若存在不獨立,使得 即 不獨立,所以與以上推論相互矛盾; 當且僅當相互獨立時上式等號成立。3-23 一個無記憶信符源的字集為-5,-3,-1,0,1,3,5,相應的概率分別是0.05,0.1,0.1,0.15,0.05,0.25,0.3,(a) 計算信源熵。(b) 假設信源輸出按如下量化規(guī)則量化 ,計算量化后的信息熵。解: (a) 由熵的定義可得取

4、2作底可得 (b) 量化后的字符集為,且 此時的熵為 取2作底可得 0.883-25 對下列二進制序列做L-Z信源編碼 : 再從編成的L-Z信源碼中恢復原序列。解:將該二進制序列做如下分解,可得到下列碼段: 0,00,1,001,000,0001,10,00010,0000,0010,00000,101,00001,000000,11,01,0000000,110 可得L-Z算法字典如下:字典位置字典內容碼字1000010000000200010000000103000111000001400100001000101500101000000100600110000100101170011110

5、00011080100000010001100901001000000101010010100010001000110101100000010010120110010100111113011010000101001114011100000000101101501111110001111610000010000111710001000000001110018100101100111103-30 某加性高斯白噪聲信道的輸出是,此處是信道輸入,是噪聲,概率密度函數(shù)為 ,如是及的白高斯輸入,計算: (a) 條件差熵。 (b) 平均互信息。解:(a) 已知信源的概率刻度函數(shù)為,為加性噪聲, , 條件熵為

6、 (b) 平均互信息為3-38 考慮一個平穩(wěn)隨機信號序列,其均值為0,自相關序列 1 (n=0) 0.5 (n=) 0 (其它) (a)的一階最小MSE預測器為,計算預測系數(shù)以及相應的最小均方誤差。(b)對于二階預測器重復(a)的問題。解:(a)由 且 , 可得 0.5 此時最小均方誤差為 (b)二階最小MSE預測器 此時, , 此時的最小均方誤差為 第四章 通信信號與系統(tǒng)的表征4-9 已知一組M個正交信號波形,他們具有相同的能量?,F(xiàn)定義一組新的M個波形 , ,試證明這M個信號波形 有相同的能量,即并且是等相關的,相關系數(shù)為證明: 由能量定義可得 ,為正交向量 即M個信號波形 有相同的能量。又

7、 即證。0.50.54-10 考察圖P4-10所示的3個波形。0 1 2 3 4t-0.50.50.5t0 40.5 0.5t0 2 4圖 P4-10(a)試證明這些波形是標準正交的。(b)如果 1 1 1 試將表示為,2,3的加權線性組合,并求加權系數(shù)。證明:(a)由圖可知 , , , ,是標準正交的。(b) ,是兩兩正交的 它們是線形獨立的 不能由,線形表示。4-13 低通高斯隨機過程的功率密度譜為 試求的功率密度譜和自相關函數(shù)。解: 根據(jù)題意可知 又 , 4-17 試對圖4-2-1(a)中的信號按,的次序進行格拉姆-施密特(GramSchmidt)正交化,得到標準正交函數(shù)集。試利用標準正

8、交函數(shù)集將信號表示為向量形式,并求各向量的能量。1t0 2110 2 3tt1-10 2-10 3t圖4-2-1(a)解: 的能量為 ,在投影為+= 的能量為 在投影為在投影為 是,的線性組合 信號空間為2 且,3,3,24-18 如圖P4-18所示,由,標準正交基函數(shù),試求4個信號的信號空間表示形式。畫出信號空間圖,并證明這種信號集等價于四相PSK信號集。0 1 2 0 1 2 0 1 2 0 10 10 1圖 P4-18(1)解:的信號空間表示式為 信號空間為 (2)證明:由題可得的能量分別為 , 即 又 , , 可知 當 時 此信號集與四PSK信號集等價。第五章 加性高斯白噪聲信道的最佳

9、接收機5-2 有一個信號為: (a)試求該信號的匹配濾波器的沖激響應。(b)試求在時刻匹配濾波器的輸出。(c)設信號通過一個相關器,它將輸入和進行相關運算。試求時刻相關器的輸出值。試與(b)中的結果相比較。解:(a) 由匹配濾波器的定義可知,其沖激響應即為 (b) 匹配濾波器的輸出為 在時刻的輸出為 (c) 由題可知,信號通過相關器,即,信號進行自相關。 顯然與(b)相同。5-6 有一個等效低通(復值)信號,其能量為假設該信號受到AWGN的惡化,其等效低通形式為,則觀察到的信號為:,該接收信號通過一個(等效低通)沖激響應為的濾波器。試求,要求(在時刻)使輸出SNR最大。解: 當信號受到AWGN影響時,具有匹配于的沖激響應的濾波器使輸出SNR最大。 且 在在時刻輸出SNR最大5-10 三元通信系統(tǒng)在每個秒內傳輸下列三個信號之一:,則接收信號為,或,其中為高斯白噪聲,。最佳接收機計算以下相關度量將與門限和門限相比較。若,則判發(fā)送,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論