簡諧振動-練習題---有答案_第1頁
簡諧振動-練習題---有答案_第2頁
簡諧振動-練習題---有答案_第3頁
簡諧振動-練習題---有答案_第4頁
簡諧振動-練習題---有答案_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、高二物理簡諧運動練習題1、一簡諧振子沿x軸振動,平衡位置在坐標原點。 時刻振子的位移;時刻;時刻。該振子的振幅和周期可能為A0. 1 m, B0.1 m, 8s C0.2 m, D0.2 m,8s2、某質點做簡諧運動,其位移隨時間變化的關系式為xAsin,則質點( )A.第1 s末與第3 s末的位移相同 B.第1 s末與第3 s末的速度相同C.3 s末至5 s末的位移方向都相同 D.3 s末至5 s末的速度方向都相同3、描述簡諧運動特征的公式是x=.自由下落的籃球經地面反彈后上升又落下.若不考慮空氣阻力及在地面反彈時的能量損失,此運動(填“是”或“不是”)簡諧運動.4、某質點做簡諧運動,其位移

2、隨時間變化的關系式為x5sin(cm),則下列關于質點運動的說法中正確的是 ( )A質點做簡諧運動的振幅為10cm B質點做簡諧運動的周期為4sC在t = 4 s時質點的速度最大 D在t = 4 s時質點的加速度最大5、在豎直平面內,有根光滑金屬桿彎成如圖所示形狀,相應的曲線方程為yAcosx。將一個光滑小環(huán)在該金屬桿上,并從x0,yA處以某一初速沿桿向x方向運動,運動過程中 ( )A小環(huán)在B點加速度為零B小環(huán)在B點和D點速度最大C小環(huán)在C點速度最大D小環(huán)在C點和E點加速度大小相等、方向相反6、一彈簧振子做簡諧運動,周期為T,下列說法正確的是( )A若t時刻和(t+t)時刻振子對平衡位置的位移

3、大小相等,方向相同,則t一定等于T的整數倍B若t時刻和(t+t)時刻振子運動速度大小相等,方向相反,則t一定等于的整數倍C若t=,則t和(t+t)兩時刻,振子的位移大小之和一定等于振幅D若t,則在t時刻和(t+t)時刻振子速度的大小一定相等7、水平彈簧振子做簡諧運動的周期為T,振子在t1時刻的動量為p、動能為q,下列說法正確的是 ( )A如果振子在t2時刻的動量也為p,則(t2t1)的最小值為TB如果振子在t2時刻的動能也為q,則(t2t1)的最小值為TC在半個周期的時間內,彈簧的彈力的沖量一定為零D在半個周期的時間內,彈簧的彈力的功一定為零8、如圖所示,一個彈簧振子在A、B兩點間做簡諧運動,

4、O點為平衡位置,下列說法中正確的有( )A它在A、B兩點時動能為零B它經過O點時加速度方向要發(fā)生變化C它遠離O點時作勻減速運動D它所受回復力的方向總跟它偏離平衡位置的位移方向相反9、光滑的水平面上放有質量分別為m和的兩木塊,下方木塊與一勁度系數為k的彈簧相連,彈簧的另一端固定在墻上,如圖所示。已知兩木塊之間的最大靜摩擦力為,為使這兩個木塊組成的系統(tǒng)能像一個整體一樣地振動,系統(tǒng)的最大振幅為( )A B C D10、國蹦床隊組建時間不長,但已經在國際大賽中取得了驕人的 成績,2008年又取得北京奧運會的金牌假如運動員從某一高處下落到蹦床后又被彈回到原來的高度,其整個過程中的速度隨時間的變化規(guī)律如圖

5、所示,其中oa 段和cd段為直線,則根據此圖象可知運動員( )A在t1t2時間內所受合力逐漸增大 B在t2時刻處于平衡位置C在t3時刻處于最低位置 D在t4時刻所受的彈力最大11、在時刻,質點A開始做簡諧運動,其振動圖象如圖所示。質點A振動的周期是 s;時,質點A的運動沿軸的 方向(填“正”或“負”)12、如圖所示是用頻閃照相的方法拍攝到的一個彈簧振子的振動情況,甲圖是振子靜止在平衡位置時的照片,乙圖是振子被拉到左側距平衡位置20 cm處放手后向右運動周期內的頻閃照片,已知頻閃的頻率為10 Hz,則下列說法正確的是 ( )A.該振子振動的周期為1.6 sB.該振子振動的周期為1.2 sC.振子

6、在該周期內做加速度逐漸減小的變加速運動D.從圖乙可以看出再經過0.2 s振子將運動到平衡位置右側10 cm處13、如圖所示,帶電量分別為4q和q的小球A、B固定在水平放置的光滑絕緣細桿上,相距為d。若桿上套一帶電小環(huán)C,帶電體A、B和C均可視為點電荷。求小環(huán)C的平衡位置。若小環(huán)C帶電量為q,將小環(huán)拉離平衡位置一小位移x后靜止釋放,試判斷小環(huán)C能否回到平衡位置。(回答“能”或“不能”即可)若小環(huán)C帶電量為q,將小環(huán)拉離平衡位置一小位移x后靜止釋放,試證明小環(huán)C將作簡諧運動。(提示:當時,則 )4qqABd14、圖(1)是利用砂擺演示簡諧運動圖象的裝置。當盛砂的漏斗下面的薄木板被水平勻速拉出時,做

7、簡諧運動的漏斗漏出的砂在板上形成的曲線顯示出砂擺的振動位移隨時間變化的關系。第一次以速度v1勻速拉動木板,圖(2)給出了砂擺振動的圖線;第二次使砂擺的振幅減半,再以速度v2勻速拉動木板,圖(3)給出了砂擺振動的圖線。由此可知,砂擺兩次振動的周期T1和T2以及拉動木板的速度v1和v2的關系是    AT1:T2=2:1 BT1:T2=1:2CV1:V2=2:1 DV1:V2=1:215、如圖所示,一水平彈簧振子在光滑水平面上的B、C兩點間做簡諧運動,O為平衡位置。已知振子由完全相同的P、Q兩部分組成,彼此拴接在一起,當振子運動到B點的瞬間,將P拿走,則以后Q的運動和

8、拿走P之前比較有AQ的振幅增大,通過O點時的速率增大BQ的振幅減小,通過O點時的速率減小CQ的振幅不變,通過O點時的速率增大DQ的振幅不變,通過O點時的速率減小16、勁度系數為k的輕質彈簧,一端連接質量為2m的物塊P(可視為質點),另一端懸掛在天花板上。靜止時,P位于O點,此時給P一個豎直向下的速度,讓P在豎直方向上做簡諧運動,測得其振幅為A。當P某次經過最低點時突然斷裂成質量均為m的兩個小物塊B和C,其中B仍與彈簧連接并做新的簡諧運動,而C自由下落,求:  (1)B所做的簡諧運動的振幅(2)B做簡諧運動時經過O點時的速率17、如圖所示,A、B兩物體與一輕質彈簧相連,靜止在

9、地面上,有一小物體C從距A物體高度處由靜止釋放,當下落至與A相碰后立即粘在一起向下運動,以后不再分開,當A與C運動到最高點時,物體B對地面剛好無壓力、設A、B、C三物體的質量均為,彈簧的勁度系數為,不計空氣阻力且彈簧始終處于彈性限度內。若彈簧的彈性勢能由彈簧勁度系數和形變量決定,求C物體下落時的高度。(提示:動量守恒定律:m1v1+m2v2=m總v)hABC18、一輕彈簧直立在地面上,其勁度系數為k=400N/m,在彈簧的上端與盒A連接在一起,盒內裝物體B,B的上下表面恰與盒A接觸,如圖所示,A、B的質量mA=mB=1kg,今將A向下壓縮彈簧,使其由原長壓縮L=10cm后,由靜止釋放,A和B一

10、起沿豎直方向作簡諧運動,不計阻力,且取g=10m/s2,試求:(1)盒A的振幅(2)在振動的最高點和最低點時,物體B對盒A作用力的大小和方向.19、(2013·安徽理綜,24)如圖121所示,質量為M、傾角為的斜面體(斜面光滑且足夠長)放在粗糙的水平地面上,底部與地面的動摩擦因數為,斜面頂端與勁度系數為k、自然長度為L的輕質彈簧相連,彈簧的另一端連接著質量為m的物塊壓縮彈簧使其長度為L時將物塊由靜止開始釋放,且物塊在以后的運動中,斜面體始終處于靜止狀態(tài)重力加速度為g.(1)求物塊處于平衡位置時彈簧的長度;(2)選物塊的平衡位置為坐標原點,沿斜面向下為正方向建立坐標軸,用x表示物塊相對

11、于平衡位置的位移,證明物塊做簡諧運動;(3)求彈簧的最大伸長量;(4)為使斜面體始終處于靜止狀態(tài),動摩擦因數應滿足什么條件(假設滑動摩擦力等于最大靜摩擦力)?圖121解析(1)設物塊在斜面上平衡時,彈簧伸長量為L,有mg sin kL0解得L此時彈簧的長度為L(2)當物塊的位移為x時,彈簧伸長量為xL,物塊所受合力為F合mgsin k(xL)聯立以上各式可得F合kx可知物塊做簡諧運動(3)物塊做簡諧運動的振幅為A由對稱性可知,最大伸長量為(4)設物塊位移x為正,則斜面體受力情況如圖所示,由于斜面體平衡,所以有水平方向FfFN1sin F cos 0豎直方向FN2MgFN1cos Fsin 0又

12、Fk(xL),FN1mgcos 聯立可得Ffkxcos ,FN2Mgmgkxsin 為使斜面體始終處于靜止,結合牛頓第三定律,應用|Ff|FN2,所以當xA時,上式右端達到最大值,于是有答案(1)L(2)見解析 (3)(4)高二物理簡諧運動練習題參考答案1、A 2、AD 3、Asinwt 不是 4、C 5、C 6、D 7、D 8、ABD9、C 10、BC 11、4 正 12、BC 13、設C在AB連線的延長線上距離B為l處達到平衡,帶電量為Q 由庫侖定律得: 有平衡條件得: 解得:(舍去); 所以平衡位置為:ld 不能 環(huán)C帶電q,平衡位置不變,拉離平衡位置一小位移x后,C受力為: 利用近似關系化簡得: 所以小環(huán)C將做簡諧運動14、D 15、C 16、(1)在O點時,彈簧伸長量B在最低點時,彈簧的伸長量B的合力為零時,彈簧的伸長量所以B做簡諧運動的振幅(2)由能量守恒可知,從點運動到最低點的過程中有:(為彈簧彈性勢能變化量)同理可知, 從最低點回到點的過程中有:解得:物塊經過點時的速率17、解:開始時A處于平衡狀態(tài),有當C下落高度時速度為,則有:C與A碰撞粘在一起時速度為,由動量守恒有:當A與C運動到最高時,B對地面無壓力,即:可得:所以最高時彈性勢能與初始位置彈性勢能相等。由機械能守恒有:解得:18、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論