下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、初中數(shù)學(xué)教學(xué)典型案例分析我僅從四個方面,借助教學(xué)案例分析的形式,向老師們匯報一下我個人數(shù)學(xué)教學(xué)的體會,這四個方面是:1.在多樣化學(xué)習(xí)活動中實現(xiàn)三維目標(biāo)的整合;2.課堂教學(xué)過程中的預(yù)設(shè)和生成的動態(tài)調(diào)整;3.對數(shù)學(xué)習(xí)題課的思考;4.對課堂提問的思考。首先,結(jié)合勾股定理一課的教學(xué)為例,談?wù)勅绾卧诙鄻踊瘜W(xué)習(xí)活動中實現(xiàn)三維目標(biāo)的整合案例1:勾股定理一課的課堂教學(xué)第一個環(huán)節(jié):探索勾股定理的教學(xué)師(出示4幅圖形和表格):觀察、計算各圖中正方形A、B、C的面積,完成表格,你有什么發(fā)現(xiàn)? A的面積B的面積C的面積圖1 圖2 圖3
2、60; 圖4 生:從表中可以看出A、B兩個正方形的面積之和等于正方形C的面積。并且,從圖中可以看出正方形A、B的邊就是直角三角形的兩條直角邊,正方形C的邊就是直角三角形的斜邊,根據(jù)上面的結(jié)果,可以得出結(jié)論:直角三角形的兩條直角邊的平方和等于斜邊的平方。這里,教師設(shè)計問題情境,讓學(xué)生探索發(fā)現(xiàn)“數(shù)”與“形”的密切關(guān)聯(lián),形成猜想,主動探索結(jié)論,訓(xùn)練了學(xué)生的歸納推理的能力,數(shù)形結(jié)合的思想自然得到運用和滲透,“面積法”也為后面定理的證明做好了鋪墊,雙基教學(xué)寓于學(xué)習(xí)情境之中。第二個環(huán)節(jié):證明勾股定理的教學(xué)教師給各小組奮發(fā)制作好的直角三角形和正方形紙片
3、,先分組拼圖探究,在交流、展示,讓學(xué)生在實踐探究活動中形成新的能力 (試圖發(fā)現(xiàn)拼圖和證明的規(guī)律:同一個圖形面積用不同的方法表示)。學(xué)生展示略通過小組探究、展示證明方法,讓學(xué)生把已有的面積計算知識與要證明的代數(shù)式聯(lián)系起來,并試圖通過幾何意義的理解構(gòu)造圖形,讓學(xué)生在探求證明方法的過程中深刻理解數(shù)學(xué)思想方法,提升創(chuàng)新思維能力。第三個環(huán)節(jié):運用勾股定理的教學(xué)師(出示右圖):右圖是由兩個正方形組成的圖形,能否剪拼為一個面積不變的新的正方形,若能,看誰剪的次數(shù)最少。生(出示右圖):可以剪拼成一個面積不變的新的正方形,設(shè)原來的兩個正方形的邊長分別是a、b,那么它們的面積和就是a2+ b2
4、,由于面積不變,所以新正方形的面積應(yīng)該是a2+ b2,所以只要是能剪出兩個以a、b為直角邊的直角三角形,把它們重新拼成一個邊長為 a2+ b2 的正方形就行了。問題是數(shù)學(xué)的心臟,學(xué)習(xí)數(shù)學(xué)的核心就在于提高解決問題的能力。教師在此設(shè)置問題不僅是檢驗勾股定理的靈活運用,更是對勾股定理探究方法和證明思想(數(shù)形結(jié)合思想、面積割補(bǔ)的方法、轉(zhuǎn)化和化歸思想)的綜合運用,從而讓學(xué)生在解決問題中發(fā)展創(chuàng)新能力。第四個環(huán)節(jié):挖掘勾股定理文化價值師:勾股定理揭示了直角三角形三邊之間的數(shù)量關(guān)系,見數(shù)與形密切聯(lián)系起來。它在培養(yǎng)學(xué)生數(shù)學(xué)計算、數(shù)學(xué)猜想、數(shù)學(xué)推斷、數(shù)學(xué)論證和運用數(shù)學(xué)思想方法解決實際問題中都具有獨特的作用。勾股定理最早記載于公元前十一世紀(jì)我國古代的周髀算經(jīng),在我國古籍九章算術(shù)中提出“出入相補(bǔ)”原理證明勾股定理。在西方勾股定理又被成為“畢達(dá)哥拉斯定理”,是歐式幾何的核心定理之一,是平面幾何的重要基礎(chǔ),關(guān)于勾股定理的證明,吸引了古今中外眾多數(shù)學(xué)家、物理學(xué)家、藝術(shù)家,甚至美國總統(tǒng)也投入到勾股定理的證明中來。它的發(fā)現(xiàn)、證明和應(yīng)用都蘊(yùn)涵著豐富的數(shù)學(xué)人文內(nèi)涵,希望同學(xué)們課后查閱相關(guān)資料,了解數(shù)學(xué)發(fā)展的歷史和數(shù)學(xué)家的故事,感受數(shù)學(xué)的價值和數(shù)學(xué)精神,欣賞數(shù)學(xué)的美。新課程三維目標(biāo)(知識和技能
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 44798-2024復(fù)雜集成電路設(shè)計保證指南
- 重慶市秀山土家族苗族自治縣新星初級中學(xué)2024-2025學(xué)年九年級上學(xué)期期中考試數(shù)學(xué)試題(無答案)
- 高中歷史 1.2 曠日持久的戰(zhàn)爭教案 新人教版選修3
- 2024年春季九年級歷史下冊 第三單元 第一次世界大戰(zhàn)和戰(zhàn)后初期的世界 第11課 蘇聯(lián)的社會主義建設(shè)教案 新人教版
- 八年級生物上冊 6.15.1人體內(nèi)物質(zhì)的運輸?shù)?課時教案 (新版)蘇科版
- 2024-2025學(xué)年高中生物 第五章 章末整合提升教案 浙科版必修2
- 2024-2025學(xué)年九年級化學(xué)下冊 第10單元 酸和堿教案 (新版)新人教版
- 八年級地理上冊 4.2 農(nóng)業(yè)參考教案 (新版)新人教版
- 高考地理一輪復(fù)習(xí)第十一章交通運輸布局與區(qū)域發(fā)展第二節(jié)交通運輸布局對區(qū)域發(fā)展的影響課件
- 高考地理一輪復(fù)習(xí)第十九章環(huán)境安全與國家安全第二節(jié)環(huán)境污染、生態(tài)保護(hù)與國家安全課件
- 校園道路的施工設(shè)計方案
- 外研版(2019)書面表達(dá) 話題作文歸納12篇(含答案)
- 小學(xué)生個人簡歷表(空表)【范本模板】
- 地表能量平衡
- 課題結(jié)題專家鑒定意見
- 快樂英語校本課程
- 軍事理論論文——我國周邊安全形勢及應(yīng)對策略
- 安利會員管理制度
- 中醫(yī)院門診患者就診流程圖
- 外來文件管理規(guī)定
- 閥門涂漆技術(shù)要求內(nèi)容
評論
0/150
提交評論