小學(xué)數(shù)學(xué)思維訓(xùn)練_第1頁
小學(xué)數(shù)學(xué)思維訓(xùn)練_第2頁
小學(xué)數(shù)學(xué)思維訓(xùn)練_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、小學(xué)數(shù)學(xué)思維訓(xùn)練方式1.求異型這是在同一來源中產(chǎn)生各種各樣的為數(shù)眾多的輸出的分析性的思維形式,而教師可以引導(dǎo)學(xué)生從不同的方面探索問題的多種答案。如1610,可以啟發(fā)學(xué)生用不同的敘述方式表述這道算式。如16 減去10 等于幾?16減去10 還剩多少?16 與10 的差是多少?10 與什么數(shù)的和是16?16比10 多多少?10 比16 少多少?16 減去什么數(shù)等于10?10 加上什么數(shù)等于16?這樣,既使學(xué)生透徹理解了數(shù)量關(guān)系,又訓(xùn)練了口頭表達(dá)能力,更重要的是鍛煉了學(xué)生的思維能力。其它如“一題多解”、“一題多變”等就不贅述了。2.求同型這是一種進(jìn)行綜合、概括的思維形式。如上例,教師亦可以用幾種不同

2、的敘述方法提出幾個問題,讓學(xué)生歸納出1610 的算式來。此外,還可以通過一些異中有同的習(xí)題來訓(xùn)練學(xué)生的抽象概括思維能力。如: 甲乙兩人接到加工54 只零件任務(wù),甲每天加工10 只,乙每天加工8只,幾天后完成任務(wù)?一件工程,甲獨(dú)做10 天完成,乙獨(dú)做15 天完成,兩人合作幾天完成?像這些形異質(zhì)同的問題,要引導(dǎo)學(xué)生自己總結(jié)出:工作總量÷工作效率=工作時(shí)間。只有這樣,學(xué)生才能以不變應(yīng)萬變,解一題會多題,可以起到減輕學(xué)生負(fù)擔(dān)的作用。3.遞進(jìn)型這是一種屬于邏輯判斷、推理的思維形式。例如,教師在講授“已知一個數(shù)的百分之幾是多少,求這個數(shù)?!币活愵}時(shí),叮以引導(dǎo)學(xué)生用已掌握的“已知一個數(shù)幾倍是多少,

3、求這個數(shù)”的解題規(guī)律去進(jìn)行邏輯推理,讓學(xué)生自己發(fā)現(xiàn)新出現(xiàn)的百分?jǐn)?shù)應(yīng)用題的解題規(guī)律。教師不要越俎代皰,否則吃力不討好,反而妨礙了學(xué)生思維能力的提高。4.逆反型這是一種敢于和善于突破習(xí)慣性思維束縛的反向思維形式。在數(shù)學(xué)教學(xué)中,可供訓(xùn)練的材料比比皆是,如加減、乘除、通分約分、正反比例等,問題是教師如何善于運(yùn)用它。如教驗(yàn)算時(shí),16-10=6,學(xué)生習(xí)慣地用16-6=10來驗(yàn)算,這時(shí)教師可啟發(fā)學(xué)生用610=16 來驗(yàn)算。經(jīng)過訓(xùn)練,學(xué)生便可知道用加法驗(yàn)算減法、用減法驗(yàn)算加法、用乘法驗(yàn)算除法、用除法驗(yàn)算乘法了。5.激化型這是一種跳躍性、活潑性、轉(zhuǎn)移性很強(qiáng)的思維形式。教師可通過速問速答來訓(xùn)練練學(xué)生。如問:3 個

4、5 相加是多少?學(xué)生答:555=15 或5×3=15。教師又問:3 個5 相乘是多少?學(xué)生答:5×5×5=125。緊接著問:3 與5 相乘是多少?學(xué)上答:3×5=15,或5×3=15。通過這樣的速問速答的訓(xùn)練,發(fā)現(xiàn)學(xué)生思維越來越活躍,越來越靈活,越來越準(zhǔn)確。6.類比型這是一種對并列事物相似性的個同實(shí)質(zhì)進(jìn)行識別的思維形式。這項(xiàng)訓(xùn)練可以培養(yǎng)學(xué)生思維的準(zhǔn)確性。如:金湖糧店運(yùn)來大米6噸。比運(yùn)來的面粉少1/4噸、運(yùn)來面粉多少噸?金湖糧店運(yùn)來大米6噸,比運(yùn)來的面粉少1/4,運(yùn)來面粉多少噸?以上兩題,雖然相似,實(shí)質(zhì)不同,一字之差,解法全異,可以點(diǎn)撥學(xué)生自己辨

5、析。通過訓(xùn)練,學(xué)生今后碰到類似的問題便會仔細(xì)推敲,這樣就大大地提高了解題的準(zhǔn)確性。7.轉(zhuǎn)化型這是解決問題遇到障礙受阻時(shí)把問題由一種形式轉(zhuǎn)換成另一種形式,使問題變得更簡單、更清楚,以利解決的思維形式。在教學(xué)中,通過該項(xiàng)訓(xùn)練,可以大幅度地提高學(xué)生解題能力。如:某一賣魚者規(guī)定,凡買魚的人必須買筐中魚的一半再加半條。照這樣賣法,4 人買了后,筐中魚盡,問筐中原有魚多少條?該題對一些沒有受過轉(zhuǎn)化思維訓(xùn)練的學(xué)生來說,會感到一籌莫展。即使基礎(chǔ)較好的學(xué)生也只能復(fù)雜的方程。 但經(jīng)過轉(zhuǎn)化思維訓(xùn)練后,學(xué)生就變得聰明起來了,他們知道把買魚人轉(zhuǎn)換成1人,顯然魚1條;然后轉(zhuǎn)換成2人,則魚有3條;再3人,則7條;再4人,則

6、15條。8.系統(tǒng)型這是把事物或問題作為一個系統(tǒng)從不同的層次或不同的角度去考慮的高級整體思維形式。在高年級除結(jié)合綜合應(yīng)用題以外還可編制許多智力訓(xùn)練題來培養(yǎng)學(xué)生系統(tǒng)思維能力。如:1 2 3 4 5 6 7 8 9在不改變順序前提下(即可以將幾個相鄰的數(shù)合在一起成為一個數(shù),但不可以顛倒),在它們之間劃加減號,使運(yùn)算結(jié)果等于1OO。象這道題就牽涉到系統(tǒng)思維的訓(xùn)練。教師可引導(dǎo)學(xué)生把10 個數(shù)看成一個系統(tǒng),從不同的層次去考慮、第一層次:找100 的最接近數(shù),即89 比100 僅少11。第二個層次:找11 的最接近數(shù),很明顯是前面的12。第三個層次:解決多l(xiāng) 的問題。整個程序如下:123456789100經(jīng)過像這樣的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論