初中數(shù)學教學_淺談中考幾何專題復習的高效策略_人教新課標版_第1頁
初中數(shù)學教學_淺談中考幾何專題復習的高效策略_人教新課標版_第2頁
初中數(shù)學教學_淺談中考幾何專題復習的高效策略_人教新課標版_第3頁
初中數(shù)學教學_淺談中考幾何專題復習的高效策略_人教新課標版_第4頁
初中數(shù)學教學_淺談中考幾何專題復習的高效策略_人教新課標版_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、淺談中考幾何專題復習的高效策略在九年級數(shù)學幾何專題復習中,怎樣科學、合理地設計教學內(nèi)容、精心地組織課堂教學,怎樣采取得力的措施和高效的方法,大幅度、快節(jié)奏地提高學生的數(shù)學素養(yǎng),讓后進生吃的消,中等生吃的飽,優(yōu)等生吃得好,使復習獲得令人滿意的效果?這是所有處在一線數(shù)學教師普遍關(guān)注和思考的課題。而平時如果大量毫無章法,不從根本揭示規(guī)律和方法的題海戰(zhàn)役,即便時間加汗水,甚至以傷害學生的身心健康為代價也并不一定能夠取得滿意的結(jié)果。本文試圖從優(yōu)質(zhì)教學觀的理論對課堂的結(jié)構(gòu)和教師專業(yè)素養(yǎng)以及結(jié)合多年一線教學實踐經(jīng)驗作出闡述、探究,舉例談幾何專題復習的幾點策略策略一 建構(gòu)高效的課堂教學模式-先學后教,當堂訓練

2、。高效的課堂教學模式是保證高效的復習效果的前提,學生在教師的指導和輔導下進行先自學、探究和及時訓練,獲得知識、發(fā)展能力的一種教學模式。在這種模式中,學生通過自學,進行探究、研究,教師則通過給出學習目標,提供一定的閱讀材料和思考問題的線索,啟發(fā)學生獨立思考。這種教學模式與全日制義務教育數(shù)學課程標準(實驗稿)所倡導的:“教師應激發(fā)學生學習積極性,向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們的在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗”相吻合,它的著眼點是要改變學生的學習方式,提高學習的效率。在復習中,學習的知識點由單一漸變?yōu)榉倍?,幾何圖形由

3、簡單漸變?yōu)閺碗s,學生的思維品質(zhì)由低級變?yōu)楦呒?,受傳統(tǒng)思想的影響,教師容易上成“滿堂灌”的填鴨式課堂,學生容易聽到“云里霧里”,只知其然不知其所以然,因此一定要按教學的認知規(guī)律和學生的心理發(fā)展規(guī)律來教學,優(yōu)質(zhì)教學要求教師從知識傳授者角色定位中解放出來,立足在“促進”上做文章。促進表現(xiàn)為:第一,激勵。教師要注重激發(fā)學生的學習熱情和學習興趣,應通過列舉典型、說明意義、明確目的,使學生感到有學習和探求的需要,從而提高學習自覺性并增強學習責任感;通過設置疑問、創(chuàng)設懸念、造成知識沖突等,使學生產(chǎn)生強烈的求知欲,只有觸及學生的情緒和意志以及學生的精神需要,使學生能深刻地體驗到驚奇、歡樂、自豪和贊嘆的教學才是

4、優(yōu)質(zhì)的教學。第二,引導。教學之功,貴在引導,引導的核心是學習方式和思維方法的啟示和點撥。教師的引導能夠保證讓學生在有意義的思考路線上進行有意義的探索,從而避免學生盲目的瞎猜和無效的活動,這是提高教學效果和效率的關(guān)鍵。當堂訓練則檢測和反饋學習效果。策略二 專題內(nèi)容的設計應遵循教與學的認知規(guī)律和學生心理發(fā)展規(guī)律,凸顯方法規(guī)律,由簡單到復雜,由特殊到一般,再由一般到特殊 前蘇聯(lián)著名心理學家維果茨基就教學與發(fā)展問題提出了“最近發(fā)展區(qū)”之說,即兒童發(fā)展可能性的思想,歸結(jié)為“教學應當走在發(fā)展的前面”。關(guān)于教學作用于兒童發(fā)展的途徑,由于維果茨基引進了區(qū)分兒童發(fā)展的兩種水平的原理而揭示出一個清楚的觀念。第一種

5、水平是現(xiàn)在發(fā)展水平,由已經(jīng)完成的發(fā)展程序的結(jié)果形成,表現(xiàn)為兒童能夠獨立解決智力任務。維果茨基把第二種水平稱為最近發(fā)展區(qū)。最近發(fā)展區(qū)說明那些尚處于形成狀態(tài),剛剛在成熟的過程。這一水平表現(xiàn)為:兒童還不能獨立地完成任務,但在教師的幫助下,在集體活動中,通過摹仿能夠完成這些任務。發(fā)展的過程就是不斷把最近發(fā)展區(qū)轉(zhuǎn)化為現(xiàn)有發(fā)展區(qū)的過程,即把未知轉(zhuǎn)化為已知、把不會轉(zhuǎn)化為會、把不能轉(zhuǎn)化為能的過程。下面的一組題都是以中點為條件構(gòu)造全等三角形這一根本解題方法來解決問題的。它在近幾年的各類考試中出現(xiàn)的頻率比較高。例題的選取從學生認為最熟悉、較簡單的問題切入,由簡變難。案例1:學習目標:以中點為條件構(gòu)造全等三角形。例

6、1、 已知:如圖,,AD為ABC中BC邊上的中線,(ABAC) (1)求證: AB-AC2AD ABAC; (2)若AB8cm,AC5cm,求AD的取值范圍例1圖 例2 圖 例3圖 例4圖 例2、如圖,已知ABC中,ABAC,E是AB的中點,延長AB到D,使BDBA, 求證 :CD2CE例3、.如圖ABC中,D為BC的中點,EDF90°,交AB、AC于E、F兩點,求證:BFECEF例4、如圖是梯形ABCD的兩內(nèi)角的平分線AE,DE恰好交于腰BC上的E點,求證: AB+DC=AD評析:例1、例2是典型的倍長中線法,是學生比較熟悉的問題,學生可以很快完成,而例3例4就不一定能夠很快的找到

7、作輔助線方法,思維的碰撞就出現(xiàn)了,這時,發(fā)動學生探討例3的解法,不能再倍長中線,但是可以試著以圖中某個與中點相關(guān)的BDF為依據(jù)構(gòu)造與它全等的三角形,作法:倍長FD至H,連CH,或者延長FD,過點C作CH/BF可證BDFCDH, 并結(jié)合EDF90°從而將三條邊BF、EC、EF集中到CEH中利用三角形三邊關(guān)系即可得結(jié)論。例4先推斷E是EF中點,從而易得結(jié)論??偨Y(jié)規(guī)律,推廣一般,上敘4例實際都是以中點為條件構(gòu)造全等三角形的方法的,其題干的核心圖形部分就是呈中心對稱的兩個三角形全等這一結(jié)論如下圖1,(虛線部分需要構(gòu)造) 圖1從一般到特殊: 拋磚引玉,解決問題例5(2008年武漢市5月調(diào)考題)

8、如圖所示,OAB,OCD為等腰直角三角形,AOBCOD90°(1)如圖2,點C在OA邊上,點D在OB邊上,連接AD,BC,M為線段AD的中點求證:OMBC;(2)如圖3,在圖2的基礎(chǔ)上,將OCD繞O逆時針旋轉(zhuǎn)(為銳角),M為線段AD的中點線段OM與線段BC是否存在某種確定的數(shù)量關(guān)系?寫出并證明你的結(jié)論;OMBC是否仍然成立?若成立,請證明;若不成立,請說明理由變形改編:如圖4,在圖2的基礎(chǔ)上,將OCD繞O順時針旋轉(zhuǎn)(為銳角),M為線段AD的中點上敘有關(guān)結(jié)論還成立嗎? 圖2 圖3 圖4 圖5評析:第一問方法較多,但是第2問則先猜想BC=2OM,證明則要突破OM為OAD的中線這一條件,同

9、前幾題的規(guī)律,從猜想的結(jié)果看需要構(gòu)造2OB這樣的線段,故可倍長OM,從而可先得MDOMAN,再證明AONOBC,即可得BC=ON=2OM,第3問同理。例6(2010年武漢市九年級元月調(diào)考試題)如圖5,在等腰ABC中,ABAC,ABC,在四邊形BDEC中,DBDE,BDE2,M為CE的中點,連接AM,DM (1)在圖中畫出DEM關(guān)于點M成中心對稱的圖形(2)求證AMDM;(3)當_,AMDM評析:例6可謂經(jīng)典的好題,但已由簡單變到復雜,將中點這一條件運用得出神入化,先由中心對稱得MDENMC,從而再證明ABDACN可得第二問,難點突破在于證對應角ABD=ACN,第三問又逆向思維反推45°

10、;為了順利地完成自己的任務,一個教師首先要掌握深刻的知識。深刻者,一針見血、入木三分也。教師的教育智慧首先就表現(xiàn)在能夠獨立鉆研、分析教材和試卷,從而挖掘出教材教法的精髓內(nèi)涵。教師對教材鉆研深刻,上起課來就會微言大義,發(fā)人深省,從而讓學生聽起來輕松,嚼起來有味,并學有所獲。策略三 設計專題內(nèi)容時考慮建立幾何模型,體現(xiàn)思想方法,讓學生駕輕就熟,化難為易,化繁為簡。幾何,常常因為圖形變化多端,方法多種多樣而被稱為數(shù)學中的變形金剛。題目千變?nèi)f化,但萬變不離其宗。每一道幾何題目背后都有著一定的法則和規(guī)律,每一類題都有著相似的解題思想,這種思想的集中體現(xiàn),便是模型。得模型者得幾何,而模型思想的建立又并非一

11、朝一夕,是需要同學們在大量的實戰(zhàn)做題和不斷總結(jié)方法中培養(yǎng)出來的。九年級后期,對于專題復習,建立幾何模型是非常有效果的,對于模型的理解和認識,分為很多層面,最淺的是基本的形似,看到圖形相仿或相似的題目,能夠有意識的聯(lián)想以前學過的題型并加以運用,套用,這是最簡單的模型思想。高一些的是神似,看到一些關(guān)鍵點,關(guān)鍵線段或是題目所給條件的相似便能夠聯(lián)想到所學知識點,通過推理和演繹逐步取得正確的解法,記住的是一些具體模型,這是第二種層次。最高的境界是,心中只有很少幾種基本模型,這些模型就像種子,看到一道題目就會發(fā)芽,開花結(jié)果,隨著對于題目的深入理解,不斷地尋找適合的花朵,每一朵花上面都有著一種具體的模型,而

12、每種模型之間,都會有樹枝相連,相互間并不是孤立的,而是借由其他條件貫穿連接的,達到這樣的理解才能算是包羅萬象,駕輕就熟。下面以角平分線的性質(zhì)和判定定理為例,具體談建立幾何模型在解幾何難題中的高效作用。 案例2:學習目標:以角平分線的性質(zhì)和判定定理為突破口解題例:如圖(基本圖形),四邊形ABDC中,給出三個論斷:AD平分BAC,BDCBAC180°,DCBC,我們可以得出這三個論斷“知二推一”,即知道任意2個論斷都可以推出第三個論斷?!吧钔诙?,廣積糧”:進一步豐富性質(zhì),若AD平分,D是角平分線AD上的任意一點,垂足分別為E、F。則相關(guān)結(jié)論 ; ; AB - AC=2 BD cosABD

13、;當圖中有關(guān)角取特殊角時,還有更特殊的關(guān)于邊的結(jié)論。比如,當,90°,120°時,分別有,。有時此圖形還會在正方形、圓內(nèi)接四邊形中出現(xiàn)。因此要求學生認識此圖形,并在復雜的圖形中分離出此圖形,在證題中快捷運用基礎(chǔ)知識證明相關(guān)結(jié)論。 基本圖形 變形1圖變形1:變一般四邊形為特殊四邊形,如圖,正方形ABCD中,P是對角線(或其延長線)上任一點,E為AB上任一點,連PE,過P作,則PEPF。同時,由于對角線BD是角平分線,根據(jù)基本圖形,可得相關(guān)結(jié)論。如果點E(或F)與正方形的頂點重合,還會有基本圖形中的所有結(jié)論,武漢市2008中考數(shù)學第24題即是以此圖為基準。變形2:添加外接圓,四

14、邊形ABDC是O的內(nèi)接四邊形,若D是弧BC的中點,則此圖形完全回到基本圖形上來,豐富的性質(zhì)也隨之而來 變形2圖 變形3圖變形3:變內(nèi)角平分線為外角平分線,如圖,ABC內(nèi)接于O,且ABAC,BAC的外角平分線交O于E,EFAB,垂足為F。則EB=EC, BF=AC+AF,三個論斷之間也存在因果關(guān)系變形4:深度運用,將某些已知條件化“動”為“定”,化“隱”為“顯”。 圖 6 圖7 圖81、如圖6,以原點為圓心作O交坐標軸與A、B、C,D是半圓AC上的一動點,當D在半圓上運動時,是否為定值,若是請求出,若不是,請說明理由。2、如圖7,以半徑OB的中點為圓心建立直角坐標系,交坐標軸與A、B、C,D是優(yōu)

15、弧ADC上一動點,是否為定值,若是請求出,若不是,請說明理由。3、如圖8,以半徑OE的中點為圓心建立直角坐標系,交坐標軸與A、B、C,D是劣弧AC,上一動點,是否為定值,若是請求出,若不是,請說明理由。評析:挖掘隱含條件,由垂徑定理,三道題都揭示B為所在弧的中點,無論D如何運動,總有DB平分ABC,ABC分別為90°,120°,60°。由此可發(fā)現(xiàn)它們就是基本圖形的變形和深化,利用模型-角平分線的性質(zhì)很快可以解決問題。從這里可以看出,對于模型的把控,不應當僅限于會用于具有明顯模型特征的題目,對于一些特征并不明顯的題目,要培養(yǎng)學生有能力添加輔助線去挖掘圖形當中的隱藏屬性。平時只有“深挖洞,廣積糧”,戰(zhàn)時方可有備無患,胸有成竹。這要求學生對于每一種基本圖形的理解要十分深刻,不僅僅要認識模型,還要會補全模型,甚至構(gòu)造模型來解決問題。 總之,“倒給學生一碗水,教師必須要有一桶水”,在幾何專題復習中,教師事先要通過大量的收集、整理、歸納各類問題,并形成體系,凸顯規(guī)律和方法。這要求教師不斷的自我提高,具有較高的專業(yè)素養(yǎng)-由擁有知識到擁有智慧,教師的教育智慧常常表現(xiàn)在對教材有真知灼見,能夠于平凡中見新奇,發(fā)人之所未發(fā),見人之所未見。從心理學角度說,獨到見解實際上是一種創(chuàng)造性思維的結(jié)果,獨到。獨到者,獨具慧眼也。這種思維的特點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論