北師版初二下冊數(shù)學(xué)知識點總結(jié)(精選)_第1頁
北師版初二下冊數(shù)學(xué)知識點總結(jié)(精選)_第2頁
北師版初二下冊數(shù)學(xué)知識點總結(jié)(精選)_第3頁
北師版初二下冊數(shù)學(xué)知識點總結(jié)(精選)_第4頁
北師版初二下冊數(shù)學(xué)知識點總結(jié)(精選)_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上最新北師大版數(shù)學(xué)(八年級下冊)知識點總結(jié)第一章 三角形的證明1、等腰三角形(1)三角形全等的性質(zhì)及判定全等三角形的對應(yīng)邊相等,對應(yīng)角也相等判定:SSS、SAS、ASA、AAS。(2)等腰三角形的判定、性質(zhì)及推論性質(zhì):等腰三角形的兩個底角相等(等邊對等角)判定:有兩個角相等的三角形是等腰三角形(等角對等邊)推論:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合(即“三線合一”)(3)等邊三角形的性質(zhì)及判定定理性質(zhì)定理:等邊三角形的三個角都相等,并且每個角都等于60度;等邊三角形的三條邊都滿足“三線合一”的性質(zhì);等邊三角形是軸對稱圖形,有3條對稱軸。判定定理:有一

2、個角是60度的等腰三角形是等邊三角形。或者三個角都相等的三角形是等邊三角形。(4)含30度的直角三角形的邊的性質(zhì)定理:在直角三角形中,如果一個銳角等于30度,那么它所對的直角邊等于斜邊的一半。2、直角三角形(1)勾股定理及其逆定理定理:直角三角形的兩條直角邊的平方和等于斜邊的平方。逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形。(2)命題包括已知和結(jié)論兩部分;逆命題是將倒是的已知和結(jié)論交換;正確的逆命題就是逆定理。(3)直角三角形全等的判定定理定理:斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等(斜邊直角邊,簡稱:HL)3、線段的垂直平分線(中垂線)(1)線段垂直平分

3、線的性質(zhì)及判定性質(zhì):線段垂直平分線上的點到這條線段兩個端點的距離相等。判定:到一條線段兩個端點距離相等的點在這條線段的垂直平分線上。(2)三角形三邊的垂直平分線的性質(zhì)三角形三條邊的垂直平分線相交于一點,并且這一點到三個頂點的距離相等。(3)如何用尺規(guī)作圖法作線段的垂直平分線分別以線段的兩個端點A、B為圓心,以大于AB的一半長為半徑作弧,兩弧交于點M、N;作直線MN,則直線MN就是線段AB的垂直平分線。4、角平分線(1)角平分線的性質(zhì)及判定定理性質(zhì):角平分線上的點到這個角的兩邊的距離相等;判定:在一個角的內(nèi)部,且到角的兩邊的距離相等的點,在這個角的平分線上。(2)三角形三條角平分線的性質(zhì)定理性質(zhì)

4、:三角形的三條角平分線相交于一點,并且這一點到三條邊的距離相等。(3)如何用尺規(guī)作圖法作出角平分線第二章 一元一次不等式和一元一次不等式組一. 不等關(guān)系1. 一般地,用符號“<”(或“”), “>”(或“”)連接的式子叫做不等式.¤2. 要區(qū)別方程與不等式: 方程表示的是相等的關(guān)系;不等式表示的是不相等的關(guān)系.3. 準(zhǔn)確“翻譯”不等式,正確理解“非負(fù)數(shù)”、“不小于”等數(shù)學(xué)術(shù)語.非負(fù)數(shù) <=> 大于等于0(0) <=> 0和正數(shù) <=> 不小于0非正數(shù) <=> 小于等于0(0) <=> 0和負(fù)數(shù) <=>

5、 不大于0二. 不等式的基本性質(zhì) 三. 不等式的解集:1. 能使不等式成立的未知數(shù)的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式.2. 不等式的解可以有無數(shù)多個,一般是在某個范圍內(nèi)的所有數(shù),與方程的解不同.¤3. 不等式的解集在數(shù)軸上的表示:用數(shù)軸表示不等式的解集時,要確定邊界和方向: 邊界:有等號的是實心圓圈,無等號的是空心圓圈;方向:大向右,小向左四. 一元一次不等式:1. 只含有一個未知數(shù),且含未知數(shù)的式子是整式,未知數(shù)的次數(shù)是1. 像這樣的不等式叫做一元一次不等式.2. 解一元一次不等式的過程與解一元一次方程類似,特別要注意

6、,當(dāng)不等式兩邊都乘以一個負(fù)數(shù)時,不等號要改變方向.3. 解一元一次不等式的步驟:去分母; 去括號; 移項; 合并同類項; 系數(shù)化為1(不等號的改變問題)4. 不等式應(yīng)用的探索(利用不等式解決實際問題)列不等式解應(yīng)用題基本步驟與列方程解應(yīng)用題相類似,即:審: 認(rèn)真審題,找出題中的不等關(guān)系,要抓住題中的關(guān)鍵字眼,如“大于”、“小于”、“不大于”、“不小于”等含義;設(shè): 設(shè)出適當(dāng)?shù)奈粗獢?shù);列: 根據(jù)題中的不等關(guān)系,列出不等式;解: 解出所列的不等式的解集;答: 寫出答案,并檢驗答案是否符合題意.五. 一元一次不等式與一次函數(shù)六. 一元一次不等式組1. 定義: 由含有一個相同未知數(shù)的幾個一元一次不等式

7、組成的不等式組,叫做一元一次不等式組.2. 一元一次不等式組中各個不等式解集的公共部分叫做不等式組的解集.如果這些不等式的解集無公共部分,就說這個不等式組無解.幾個不等式解集的公共部分,通常是利用數(shù)軸來確定.3. 解一元一次不等式組的步驟:(1)分別求出不等式組中各個不等式的解集;(2)利用數(shù)軸求出這些解集的公共部分,即這個不等式組的解集.兩個一元一次不等式組的解集的四種情況(a、b為實數(shù),且a<b)一元一次不等式解集圖示敘述語言表達(dá)x>b兩大取較大x>a兩小取小a<x<b大小交叉中間找無解在大小分離沒有解(是空集)第三章 圖形的平移與旋轉(zhuǎn)一、平移 1、定義在平面

8、內(nèi),將一個圖形整體沿某方向移動一定的距離,這樣的圖形運動稱為平移。2、性質(zhì)平移前后兩個圖形是全等圖形,對應(yīng)點連線平行且相等,對應(yīng)線段平行且相等,對應(yīng)角相等。二、旋轉(zhuǎn) 1、定義在平面內(nèi),將一個圖形繞某一定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn),這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。2、性質(zhì)旋轉(zhuǎn)前后兩個圖形是全等圖形,對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角等于旋轉(zhuǎn)角。第四章 分解因式一. 分解因式1. 把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.2. 因式分解與整式乘法是互逆關(guān)系.因式分解與整式乘法的區(qū)別和聯(lián)系:(1)整式乘法是把幾個整式

9、相乘,化為一個多項式;(2)因式分解是把一個多項式化為幾個因式相乘.二. 提公共因式法1. 如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法. 如: 2. 概念內(nèi)涵:(1)因式分解的最后結(jié)果應(yīng)當(dāng)是“積”;(2)公因式可能是單項式,也可能是多項式;(3)提公因式法的理論依據(jù)是乘法對加法的分配律,即: 3. 易錯點點評:(1)注意項的符號與冪指數(shù)是否搞錯;(2)公因式是否提“干凈”;(3)多項式中某一項恰為公因式,提出后,括號中這一項為+1,不漏掉.三. 運用公式法1. 如果把乘法公式反過來,就可以用來把某些多項式分

10、解因式.這種分解因式的方法叫做運用公式法.2. 主要公式:(1)平方差公式: (2)完全平方公式: ¤3. 易錯點點評:因式分解要分解到底.如就沒有分解到底.4. 運用公式法:(1)平方差公式: 應(yīng)是二項式或視作二項式的多項式;二項式的每項(不含符號)都是一個單項式(或多項式)的平方;二項是異號.(2)完全平方公式:應(yīng)是三項式;其中兩項同號,且各為一整式的平方; 還有一項可正負(fù),且它是前兩項冪的底數(shù)乘積的2倍.5. 因式分解的思路與解題步驟:(1)先看各項有沒有公因式,若有,則先提取公因式;(2)再看能否使用公式法;(3)用分組分解法,即通過分組后提取各組公因式或運用公式法來達(dá)到分解

11、的目的;(4)因式分解的最后結(jié)果必須是幾個整式的乘積,否則不是因式分解;(5)因式分解的結(jié)果必須進行到每個因式在有理數(shù)范圍內(nèi)不能再分解為止.四. 十字相乘法:1.對于二次三項式,將a和c分別分解成兩個因數(shù)的乘積, , , 且滿足,往往寫成 的形式,將二次三項式進行分解. 如: 2. 二次三項式的分解: 3. 規(guī)律內(nèi)涵:(1)理解:把分解因式時,如果常數(shù)項q是正數(shù),那么把它分解成兩個同號因數(shù),它們的符號與一次項系數(shù)p的符號相同.(2)如果常數(shù)項q是負(fù)數(shù),那么把它分解成兩個異號因數(shù),其中絕對值較大的因數(shù)與一次項系數(shù)p的符號相同,對于分解的兩個因數(shù),還要看它們的和是不是等于一次項系數(shù)p.4. 易錯點

12、點評:(1)十字相乘法在對系數(shù)分解時易出錯;(2)分解的結(jié)果與原式不等,這時通常采用多項式乘法還原后檢驗分解的是否正確.第五章 分式一. 分式1. 兩個整數(shù)不能整除時,出現(xiàn)了分?jǐn)?shù);類似地,當(dāng)兩個整式不能整除時,就出現(xiàn)了分式. 整式A除以整式B,可以表示成的形式.如果除式B中含有字母,那么稱為分式,對于任意一個分式,分母都不能為零.2. 整式和分式統(tǒng)稱為有理式,即有: 3. 進行分?jǐn)?shù)的化簡與運算時,常要進行約分和通分,其主要依據(jù)是分?jǐn)?shù)的基本性質(zhì): 分式的分子與分母都乘以(或除以)同一個不等于零的整式,分式的值不變. 4. 一個分式的分子、分母有公因式時,可以運用分式的基本性質(zhì),把這個分式的分子、

13、分母同時除以它的們的公因式,也就是把分子、分母的公因式約去,這叫做約分.二. 分式的乘除法1. 分式乘以分式,用分子的積做積的分子,分母的積做積的分母;分式除以以分式,把除式的分子、分母顛倒位置后,與被除式相乘.即: , 2. 分式乘方,把分子、分母分別乘方.即: 逆向運用,當(dāng)n為整數(shù)時,仍然有成立.3. 分子與分母沒有公因式的分式,叫做最簡分式.三. 分式的加減法1. 分式與分?jǐn)?shù)類似,也可以通分.根據(jù)分式的基本性質(zhì),把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.2. 分式的加減法: 分式的加減法與分?jǐn)?shù)的加減法一樣,分為同分母的分式相加減與異分母的分式相加減.(1)

14、同分母的分式相加減,分母不變,把分子相加減;上述法則用式子表示是:(2)異號分母的分式相加減,先通分,變?yōu)橥帜傅姆质?然后再加減;上述法則用式子表示是:3. 概念內(nèi)涵:通分的關(guān)鍵是確定最簡分母,其方法如下:最簡公分母的系數(shù),取各分母系數(shù)的最小公倍數(shù);最簡公分母的字母,取各分母所有字母的最高次冪的積,如果分母是多項式,則首先對多項式進行因式分解.四. 分式方程1. 解分式方程的一般步驟:在方程的兩邊都乘最簡公分母,約去分母,化成整式方程;解這個整式方程;把整式方程的根代入最簡公分母,看結(jié)果是不是零,使最簡公母為零的根是原方程的增根,必須舍去.2. 列分式方程解應(yīng)用題的一般步驟:審清題意;設(shè)未知數(shù);根據(jù)題意找相等關(guān)系,列出(分式)方程;解方程,并驗根;寫出答案.第六章 四邊形性質(zhì)探索 1、平行四邊形的性質(zhì)(1)平行四邊形的對邊平行且相等。(2)平行四邊形相鄰的角互補,對角相等(3)平行四邊形的對角線互相平分。(4)平行四邊形是中心對稱圖形,對稱中心是對角線的交點。常用點:(1)若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段的中點是對角線的交點,并且這條直線二等分此平行四邊形的面積。(2)推論:夾在兩條平行線間的平行線段相等。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論