版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、4.16證明連續(xù)和離散二維傅里葉變換都是平移和旋轉(zhuǎn)不變的首先列出平移和旋轉(zhuǎn)性質(zhì):f(x,y)ej2(UoX/Mv°y/N)F(uu°,vv0)(4.6-3)f(xx°,yy°)F(u,v)ej2(X)r/My°v/N)(4.6-4)旋轉(zhuǎn)性質(zhì):xrcos,yrsin,ucos,vsinf(r,°)F(,°)(4.6-5)證明:由式(4.5-15)得:3伏工»把屋醴曲必+9叫二ZZf(xry)e+?一/2北("重/屈+"17.)由式(4.5-16)得:3Tf/MG2dz依次類(lèi)推證明其它項(xiàng)。J=flJ
2、=OM-1JV-1x=D=0F(W-E加.-哂IAY-1N1加2區(qū)出“,0eT"(MuM=0v=0xej2n(ux/M-uy/N)府與空uMXej2n1(it(x-x)/M+r(y-)/V)f(x-xy-y4.17由習(xí)題4.3可以推出1(u,v)和(t,z)1。使用前一個(gè)性質(zhì)和表4.3中的平移性質(zhì)證明連續(xù)函數(shù)f(t,z)Acos(2u°t2v°z)的傅里葉變換是一、Ar,、F(u,v)-(uu°,vv°)證明:(uu°,vv°)精選F(u,v)f(t,z)ej2(utvz)dtdzj2(utvz)Acos(2uot2v0z)
3、edtdzj2(uotvoz)j2(uotvoz)j2(utvz)eeedtdzj2(uotvz)j2(utvz)eedtdzAj2(uotvz)j2(utvz)Aeedtdz一22(uuo,vv0)(uu0,vvo)2一(uuo,vvo)(uuo,vvo)24.18 證明離散函數(shù)f(x,y)1的DFT是1(u,v)1,uv00,其它證明:離散傅里葉變換F(u,v)f(x,y)ex0y0j2(ux/Mvy/N)1j2(ux/Mvy/N)j2(ux/Mvy/N)如果uv0,11,否貝U:M1N11cos2(ux/Mvy/N)jsin2(ux/Mvy/N)x0y0M1N1考慮實(shí)部,1cos2(ux
4、/Mvy/N),cos2(ux/Mvy/N)的值介x0y0M1N1于-1,1,可以想象,1cos2(ux/Mvy/N)0,虛部相同,所以x0y01(u,v)1,uv00,其它4.19 證明離散函數(shù)cos(2uox2voy)的DFT是1rF(u,v)-(uMuo,vNvo)(uMuo,vNvo)精選證明:F(u,v)cos(20UoX2、j2(ux/Mvy/N)v°y)e(u°xv°y)j2(u0xv0y)j2(ux/Mvy/N)e00e(u°xv0y)eMj2(ux/Mvy/N)j2(u°xv°y)j2(ux/Mvy/N),e)M1N
5、1ej21N(Mu°x/MNv°y/N)j2(ux/Mvy/N)ej2(Mu°x/MNv°y/N)j2(ux/Mvy/N),e)1r萬(wàn)(uMU0,vNV。)(UMU0,vNV0)j2(ux/Mvy/N)f(x,y)e04.20 下列問(wèn)題與表4.1中的性質(zhì)有關(guān)。 (a)證明性質(zhì)1的正確性。 (b)證明性質(zhì)3的正確性。(c)證明性質(zhì)6的正確性。 (d)證明性質(zhì)7的正確性。(e)證明性質(zhì)9的正確性。(f)證明Tt質(zhì)10的正確性。 (g)證明性質(zhì)11的正確性。(h)證明性質(zhì)12的正確性。(i)證明性質(zhì)13的正確性。精選表4.1二維DFT及其反變換的某些對(duì)稱(chēng)性質(zhì)“
6、印u,V)和uM分別是Fiu.v)的實(shí)吝聯(lián)口虛部7術(shù)語(yǔ)復(fù)函數(shù)指出一個(gè)函數(shù)有非零實(shí)部和虛部空間城3)4)5)6)7)田4)10)11)/(AV)麻函數(shù)G/(Aty)實(shí)函數(shù)=外小尸)虛的數(shù)=/(一二-芋)實(shí)函數(shù)0/口£-)復(fù)函數(shù)0/*(司功篁函數(shù)=八匕.刃實(shí)函數(shù)和偶函數(shù)=ff¥._V)突函數(shù)和奇函數(shù)=f*.F)冷函數(shù)和偶函數(shù)=fiy)慮函敕和奇函較ofq._v)復(fù)函數(shù)和儡函數(shù)0/(匕用且函數(shù)和奇函數(shù)0股率域,F(xiàn),回憶可知.印,是離散(整數(shù))變鼠,工和口在區(qū)間似MT1內(nèi).V和但在區(qū)間以川71內(nèi)一布一個(gè)發(fā)函數(shù)是偶函數(shù)意味若其實(shí)部和虛郡都是陽(yáng)函數(shù),稱(chēng)-個(gè)復(fù)函數(shù)為奇函教同群克味苕苴實(shí)部
7、和虛即都是價(jià)函數(shù)(a)當(dāng)f(x,y)為實(shí)函數(shù),則*M1N1F(u,v)f(x,y)exp(j2ux/Mvy/N)x0y0M1N1*f(x,y)exp(j2ux/Mvy/N)x0y0M1N1f(x,y)exp(2ux/Mvy/N)x0y0F(u,v)(b)當(dāng)f(x,y)為實(shí)函數(shù),則F(u,v)R(u,v)jl(u,v)和F(u,v)R(u,v)jI(u,v)*并且F(u,v)R(u,v)jI(u,v)。而且F(u,v)F(u,v),所以可以得到:R(u,v)jI(u,v)R(u,v)jI(u,v),便是R(u,v)R(u,v)為偶函數(shù)和I(u,v)I(u,v)為奇函數(shù)。精選(”,/)F(n)F*
8、=-Fu.v)陽(yáng)Hja)假函數(shù);/(W,V)奇函數(shù)R(U.V)力函數(shù):7(UhV)偶函數(shù)產(chǎn)氣如甘)復(fù)函數(shù)F(T,f)熨函數(shù)復(fù)函數(shù)F(w.vi實(shí)函數(shù)和偶函數(shù)Rmj虛函數(shù)和奇函數(shù)F(出門(mén)虛函數(shù)和科函數(shù)Fg)寰函數(shù)和奇函數(shù)F(u,v)復(fù)函數(shù)和偶函數(shù)四明門(mén)復(fù)函數(shù)和奇函數(shù)當(dāng)f(x,y)為復(fù)函數(shù),由下式得:f(x,M1N1y)f(m,n)exp(j2m0n0um/Mvn/N)1*0f(m'n)exp(j2um/Mvn/N)F(u,v)所以得證;*(d)當(dāng)f(x,y)為復(fù)函數(shù),由下式得:*f(x,y)M1N1*f(x,y)exp(j2m0n0ux/Mvy/N)m0n0*F(u,v)所以得證;f(x,
9、y)exp(j2ux/Mvy/N)(e)當(dāng)f(x,y)為實(shí)函數(shù)、奇函數(shù),則F(u,v)的實(shí)部為0,即為虛數(shù),且也是奇數(shù)。F(u,v)M1N1f(x,y)exp(j2ux/Mvy/N)x0y0M1N1f(x,y)exp(j2(ux/M)exp(j2vy/N)x0y0M1N1oddevenjoddevenjoddx0y0M1N1oddevenM1N12jevenevenx0y01N1oddeven由式可知,為虛數(shù)。當(dāng)f(x,y)為虛函數(shù)、偶函數(shù),由下式得:精選F(u,v)M1N1f(x,y)exp(2ux/Mvy/N)x0y0M1Njg(x,y)exp(j2ux/M)exp(j2vy/N)M1Nj
10、evenevenjoddevenjoddx0yM1Njeveneveneven2jevenoddoddoddevenevenx0y01N1evenoddM1NM1N1jevenevenx0y0所以F(u,v)為一虛數(shù)。(g)當(dāng)f(x,y)為虛函數(shù)、奇函數(shù),由下式得:M1N1F(u,v)joddx0y0M1N1joddevenx0y0M1N1joddevenx0y0可知,結(jié)果為一實(shí)數(shù)。eveneven2jevenjoddevenjoddM1N12evenevenx0y0odd1Noddodd1oddeven0y0(h)當(dāng)f(x,y)為復(fù)函數(shù)、偶函數(shù),由下式得:f(x,y)fre(x,y)jM1N
11、1f.(x,y)F(u,x)fre(x,y)jfie(x,y)exp(j2ux/Mvy/N)x0y0M1N1fre(x,y)exp(j2ux/Mvy/N)1N1fie(x,y)exp(j2ux/Mvy/N)x0y0由式子可知,前項(xiàng)為實(shí)數(shù),而后項(xiàng)為一純虛偶數(shù)。(i)當(dāng)f(x,y)為復(fù)函數(shù)、奇函數(shù),由下式得:M1N1F(u,v)f(x,y)jf(x,y)exp(j2ux/M,vy/N)八八roiox0y0M1N1M1N1fro(x,y)exp(j2ux/Mvy/N)jfio(x,y)exp(j2ux/Mvy/N)x0y0x0y0由式子可知,前項(xiàng)為一偶實(shí)函數(shù),后項(xiàng)為一純虛奇數(shù)。節(jié)中
12、在討論頻率域?yàn)V波時(shí)需要對(duì)圖像進(jìn)行填充。在該節(jié)中給出的圖像填充方法是,在圖像中行和列的末尾填充0值(見(jiàn)上面的左圖)。如果我們把圖精選像放在中心,四周填充0值(見(jiàn)上面的右圖),而不改變所用0值的總數(shù),會(huì)有區(qū)別嗎?試解釋原因。答:如下圖所示精選fg)0200400(i)E4.36左邊:兩個(gè)離散函數(shù)的卷板口右邊:相同函數(shù)的卷積,考慮DET周期性的應(yīng)用。注意在(j)中鑄近周期的數(shù)據(jù)如何混漕卷積結(jié)果觀(guān)察上圖,左圖是正確的結(jié)果,右圖是纏繞錯(cuò)誤”引起的卷積錯(cuò)誤。這個(gè)纏繞錯(cuò)誤出現(xiàn)的原因在于沒(méi)有對(duì)圖像進(jìn)行填充,只有通過(guò)填充之后獲得適當(dāng)?shù)拈g距才能得到正確的卷積結(jié)果。精選關(guān)鍵在于得到適當(dāng)?shù)拈g距”,左右兩種填充可以得到
13、相同的結(jié)果。4.22同一幅圖像的兩個(gè)傅里葉頻譜如右圖所示。左邊的頻譜對(duì)應(yīng)于原圖像,右邊的頻譜圖像使用0值填充后得到的。解釋右圖所示的譜沿垂直軸和水平軸方向的信號(hào)強(qiáng)度顯著增加的原因答:除非原圖像中所有的邊界都是黑色的,用0值填充圖像的邊界將不可避免地在圖像的一條或多條邊界上引入灰度值變化的不連續(xù)性,即新增了水平邊界和垂直邊界",邊界”意味著高頻分量,所以,對(duì)應(yīng)到頻域中,我們看到了沿垂直軸和水平軸方向的信號(hào)強(qiáng)度顯著增加的現(xiàn)象。4.23由表4.2可知DFT的直流項(xiàng)F(0,0)與其對(duì)應(yīng)的空間圖像的平均值成正比。假定圖像尺寸是MN0假如對(duì)圖像進(jìn)行0填充后,圖彳a的尺寸為PQ,其中P和Q分別由式
14、(4.6-31)和式(4.6-32)給出。令Fp(0,0)代表填充后的函數(shù)的DFT的直流項(xiàng)。(a)原圖像平均值和填充后圖像平均值的比值是多少?(b)Fp(0,0)F(0,0)嗎?假設(shè)從數(shù)學(xué)角度回答。解:(a)圖像灰度平均值的計(jì)算:精選M-1jV-1f(xfy)=訴/=oy=Q所以p_Q_1fP(xty)而£Z%(x,y)YxOy=07x0y=0MN-原圖像平均值和填充后圖像平均值的比值是(b)是的,它們相等。解釋:我們知道F(O,O)=MN/(x,y)%(O,O)=PQfp(x,y)結(jié)合(a)的結(jié)論,可以證明。4.24 證明表4.2中的周期性質(zhì)(性質(zhì)8)精選表42DFT定義及相應(yīng)表達(dá)
15、式小結(jié)石穆賽達(dá)式口小工鐘的胤敵那甲叫變押DHroE母廣加的離假佛里明反也換IDFT1MTNT門(mén)二W=77Z72.2-RwJ*MNii|3堤小近表示FfUdUFlfirj%灑"'4)潸fl-Re*J(fJ:卻相儲(chǔ)<MtLT=an?jn_ffui.lI酊助率請(qǐng)熱HEI.Ffut.ri-n均被W1/(j.y)VVfLtBv>*MM±七:Ml8)周神鬼和身為整世F(uMmFUi+A.jV/.t>-Fbi.Visf(m1Mfix.y)-/i|,i+1:M,v1/(x¥+1Ml=/1/+氏/。、+Jt?")*贛相M-liV-lfix.y)=
16、£工y-ifr)apdf»4l10)相美y)=££jf=mn加flrlwnH)二rtDFT時(shí)以即曳件圖像的仃刖:廿首吃DFT口換.優(yōu)后沿清果的砥£-轉(zhuǎn)變撞M4JL1節(jié)使用正變捶獨(dú)居于州用葉反奧Hpal4-ritt折冊(cè),梅門(mén)心人卅筲止叁操的將法n:就右觸中.播用,網(wǎng)n”取貳其樹(shù)郝憾晚可增出希般的反常彈V.4,!12W證明:離散傅里葉變換M1N1F(u,v)f(x,y)ej2(ux/MSx0y0MINIf(x,y)vy/N)1j2(ux/MF(u,v)eMNu0voMINIF(uk1M,v)f(x,y)ex0y0j2(ukiM)x/Mvy/NMIN
17、If(x,y)ex0y0j2ux/Mkixvy/NMINIf(x,y)ex0y0j2(ux/Mvy/N)j2kixef(x,y)e0j2(ux/Mvy/N)F(u,v)精選MINIF(u,vk?N)f(x,y)ex0y0j2ux/M(vkzN)y/NMINIf(x,y)ex0y0MINIf(x,y)ex0y0MINIf(x,y)ex0y0j2ux/Mvy/Nk2yj2(ux/Mvy/N)j2k2yej2(ux/Mvy/N)F(u,v)其它證明類(lèi)似。4.25 下列問(wèn)題與表4.3中的性質(zhì)有關(guān)。(a)證明一維情況下離散卷積定理的正確性。(b)對(duì)于二維情況,重復(fù)(a)(c)證明性質(zhì)9的正確性。(d)證
18、明性質(zhì)13的正確性。(注意:習(xí)題4.18、習(xí)題4.19和習(xí)題4.31也與表4.3有關(guān))表43DFT對(duì)的小結(jié)第12項(xiàng)和第13項(xiàng)中的閉合表達(dá)式僅對(duì)連螳變量樗效一通過(guò)對(duì)鬧合影式的連續(xù)表達(dá)式取樣后、它們也可用于西散變量名稱(chēng)OFTfl1)見(jiàn)表4一2)錢(qián)件用甚11f九J"C口'面,*1|*力與舊力3)科維停)八3¥訕【心前v0網(wǎng)時(shí)4)平昨回粒利不的中工小心小門(mén)1點(diǎn)/UrX-lL'0r(U-lfZ2,M-V/2人上心<F2,T-用/好0f&以-1廣5)旋轉(zhuǎn)1/恒的日u血ie5/1畢-一松解昵電八4>)*AU,v)O/f1用F幽工jrj07)相關(guān)定Lt門(mén)
19、+用i.V*Fifl»«)離荒單位沖激19)蚯形端trreel口/|e*u瘧加%汨厘(MmltmbhkdiEttm"加茄m+*”2+*端一加"一N%)精選名稱(chēng)._曠V;余晟落數(shù)L2Ml+2x1-1y)»!|捅面+M叫卜r*N'J+占(聞*仙5*=N*“i-一!K琳蟆曄壹及時(shí)推導(dǎo).力比除鵬帆期j和;K卡網(wǎng)變時(shí)f"和新瀏霹變M一概蝎何收悍G二W也聚回用產(chǎn)DFT處理、就才建地的表山隈定/HJ=u:停圖加4-M"山):珀方沙色-1-estiljtjtf1;1j2xvF(p.v)Jr去”:MJA0"(4是#出it電速
20、超由就亡部過(guò)。埴先向冊(cè)列/獷履珞祖和煙工一星站臺(tái)曲一出用汁"i:川“證明:(a)一維情況下離散卷積定理的證明由(4410)以及一維離散傅里葉變換的定義可知M1f(x)*h(x)f(m)h(xm)(4.4-10)m0一維傅里葉變換:M1F(u)f(x)ej2ux/M,u0,1,2,.,M1(4.4-6)x0M11j2ux/Mf(x)F(u)e,x0,1,2,.,M1(4.4-7)Mu0Vf-lx=o=zzfmhxm)g-蘆j“八忖x=Qm=0M-M-l=h(x2Mg/m?n=0x=0而:MIZm)ej2r:ux/M=3h(x-m)=H(_u)ej27imu/Mx=0所以:精選M-l3f
21、WhW=Zf(m)e-j2nmu/MH(u)=F(u)Hku(b)由(a)可知MTNT££f(x,y'十叩/N)x=0y=0M-N-1zzf(mrnh(xmty-n=(J«=0Af-1N-szjr=Oy=0Xg-/27r(h/M+叩/N)mryn)£工/(加川£矛(父一m=0"=0x=0y=0X©J24HK/M+uy/N)AJ-1N-izz/(m,02-WmwW/N)H(心功m=0“=0F(utv)H(ufv(c)矩形波recta,b的傅里葉變換:sin(ua)sin(ub)j陽(yáng)vb)9recta,babeuaub(
22、d)證明性質(zhì)13的正確性。2222222性質(zhì)13A22e2(tz)Ae(uv)/24.26(a)證明連續(xù)變量t和z的連續(xù)函數(shù)f(t,z)的拉普拉斯變換滿(mǎn)足下列傅里葉變換對(duì)拉普拉斯變換的定義見(jiàn)式(3.6.3):2-222_f(t,z)4(uv)F(u,v)(提示:研究表4.3中的性質(zhì)12并參閱習(xí)題4.25(d)(b)前面閉合顯示的表達(dá)式僅適用于連續(xù)變量。然而,使用MN濾波器222H(u,v)4(uv)它可能是離散頻率域?qū)崿F(xiàn)拉普拉斯的基礎(chǔ),H(u,v)42(u2v2),精選u0,1,2,.,M1,v0,1,2,.,N1o解釋您怎樣實(shí)現(xiàn)這個(gè)濾波器。(c)正如您在例4.20中看到的那樣,頻率域的拉普拉
23、斯結(jié)果類(lèi)似于使用中心系數(shù)為-8的空間模板的結(jié)果。請(qǐng)說(shuō)明頻率域拉普拉斯結(jié)果與中心系數(shù)為-4的空間模板的結(jié)果不同的原因。(a)證明:由第3章可知,兩個(gè)連續(xù)變量的拉普拉斯函數(shù)f(t,z)定義為根據(jù)表4.3中的性質(zhì)12,可得拉普拉斯函數(shù)的傅里葉變換為3鏟小匐=§簾+3駕呵1at1dzL'J=F(p,v)+(J2nv)2F(p,v)=-4荷/+吟F(my).得證。(b)答:由前面的推導(dǎo)可以看出,拉普拉斯濾波器適用于連續(xù)變量。對(duì)離散傅里葉變換,我們可以通過(guò)對(duì)拉普拉斯函數(shù)進(jìn)行采樣來(lái)構(gòu)造相應(yīng)的濾波器:月(4”)二一4n2(小十#)其中,u0,1,2,.,M1,v0,1,2,.,N10當(dāng)傅里葉
24、變換是圓形形式時(shí),頻域的拉普拉斯濾波器可以表示為H(u,i/)=-4tt2(w-M/22+v-N/2)總之,對(duì)空域和頻域之間的變換,我們使用以下拉普拉斯傅里葉變換對(duì):八犬-4tt2(uM/22+vN/2iF(u,v)核心思想是:離散的拉普拉斯傅里葉變換是通過(guò)對(duì)連續(xù)的拉普拉斯傅里葉變換進(jìn)行采樣得到的。(c)由于拉普拉斯變換是各向同性的,如果空域中的模板包含了對(duì)角分量,則拉普拉斯變換的對(duì)稱(chēng)性的近似程度更大。所以,相比于中心系數(shù)為-4的空間模板,中心系數(shù)為-8的空間模板更加類(lèi)似于頻率域的拉普拉斯結(jié)果。4.27考慮大小為55的空間模板,它平均與點(diǎn)(x,y)最靠近的12個(gè)鄰點(diǎn),但平均值排除該點(diǎn)本身。精選
25、(a)在頻率域找出與其等價(jià)的濾波器H(u,v)(b)證明您的結(jié)果是一個(gè)低通濾波器。解:為了節(jié)省時(shí)間,以下不用55,而根據(jù)英文版習(xí)題答案進(jìn)行回答空域的均值(中心點(diǎn)除外)為以/)=1f(x.y+l)+f(x+lty)+f(x-+-1)4由表4.3中的性質(zhì)3可得:£小”/¥+炭如"時(shí)+e-j2u/Mfe-j2zv/Nutr)其中/(UjU)=-cos(27Tzz/M)+COS(2fTP/Af)(b)為了解釋這是一個(gè)低通濾波器,我們先將這個(gè)濾波器表示為中心形式(以廿)=;cos(2ttu+cos(2jtpN/2/N為了便于解釋?zhuān)覀兿瓤紤]一個(gè)變量。當(dāng)u從0增加到M-1時(shí),
26、cos(2uM/2/M)的值從-1增加到1,又從1減小到-1,當(dāng)uM/2時(shí),達(dá)到最大值1。因此,越遠(yuǎn)離中心點(diǎn),該濾波器的值越小,這就是低通濾波。4.28 基于式(3.6.4),近似二維離散微分的一種方法是計(jì)算形如f(x1,y)f(x1,y)2f(x,y)和f(x,y1)f(x,y1)的差。(a)在頻率域找出與其等價(jià)的濾波器H(u,v)。(b)證明您的結(jié)果是一個(gè)高通濾波器。(a)解:根據(jù)離散傅里葉變換DFT的定義和表4.3性質(zhì)3可得f(x1,y)f(x1,y)2f(x,y)ej2u/MF(u,v)ej2u/MF(u,v)2F(u,v)所以f(x1,y)f(x1,y)2f(x,y)H(u,v)F(
27、u,v)精選其中j2u/Mj2u/McH(u,v)ee22cos(2u/M)1(b)為了解釋這是一個(gè)高通濾波器,我們先將這個(gè)濾波器表示為中心形式H(u,v)2cos2(uM/2)/M1當(dāng)u從0增加到M-1時(shí),cos2(uM/2)的值最初為-1,在uM/2時(shí)為1,在uM1時(shí)為-1,H(u,v)的值從-4變到0,再?gòu)?變到-4。所以,越靠近中心點(diǎn),H(u,v)的幅度越小,因此,這是一個(gè)高通濾波。4.29 找出一個(gè)等價(jià)的濾波器H(u,v),它在頻率域?qū)崿F(xiàn)使用圖3.37(a)中的拉普拉斯模板執(zhí)行的空間操作。解:濾波函數(shù)如下:)=f(x+l»y)+/(x-Ly)+f(xty+1)+f(xty-
28、1)-4/(x,y)正如4.28,=H(uty)F(utv)其中,+e-j2nu/M+e-j2JN_4=2cos(2nu/M)+cos(2nv/N)-2.將頻率轉(zhuǎn)移到中心點(diǎn),H(utv)=2cos(2u-M/2/M)+cos(27rN/2/N)2當(dāng)5M=(M/2,N/2)時(shí)H5M=0。越遠(yuǎn)離中心點(diǎn),廿)的幅度越大。最重要的一點(diǎn)在于:直流分量被濾除,保留了高頻分量,所以這是一個(gè)高通濾波器。4.30 您能想出一種使用傅里葉變換計(jì)算(或分部計(jì)算)用于圖像差分的梯度幅度見(jiàn)式(3.6-11)的方法嗎?如果您的回答是可以,那么請(qǐng)給出一種方法去實(shí)現(xiàn)它。如果您的回答是不可以,請(qǐng)解釋原因。答:M(x,y)mag
29、(f).g2g;(3.6-11)精選無(wú)法通過(guò)傅里葉變換進(jìn)行上式的計(jì)算,因?yàn)楦道锶~變換是一個(gè)線(xiàn)性過(guò)程,而該式中涉及到平方和平方根等非線(xiàn)性計(jì)算。我們能夠利用傅里葉變換計(jì)算差值,但是,不能用其處理平方、平方根、絕對(duì)值等運(yùn)算,只能在空域里面處理這些運(yùn)算。4.31在連續(xù)頻率域中,一個(gè)連續(xù)高斯低通濾波器有如下傳遞函數(shù):H(u,v),22、JuV)e證明相應(yīng)的空間域?yàn)V波器是h(t,z)e22(t2z2)證明:Wewarntoshowthat丁收-四回JW=及皿2小小印“叫Theexplanationwillbedearerifwestartwithonevariable.Wewanttoshowthat,i
30、fthenh(t)=3-1H=Ie-舟*=產(chǎn).Wecanexpresstheintegralintheprecedingequationsas/2(f)=廣才M寸也爐R1加-oaMakinguseoftheidentity£?T)21f2f2(zn)2(r3r2e2e2=1inTheprecedingintegralyields/j(f)=enr'OOc點(diǎn)/一J4mT,rHl4口J-0'2Next,wemakethechangeofvariablesr=*一j2;rcr?r.Then,dr=diandtheprecedingintegralbecomes精選och(r
31、j=edr.J-CKFinally,wemultiplyanddividetherightsideofthisequationby/STrcandobtain2)=而“-"焉TheexpressioninsidethebracketsisrecognizedastheGaussianprobabilitydensityfunctionwhosevalueironi-ooiooois1.lThereibrehh(t)=ae-22tWiththeprecedingresultsasbackground,wearenowreadytoshowthat=衣卡+M2=42m%I/f,+*.By
32、substiditingdirectlyintodiedefinitionoftheinverseFouriertransformwehave:£(一事一I-heintegralinsidethebracketsisrecognizedfromhepreviousdiscussiontobeequalLua-rThenjheprecedingintegralbecomeshttz)=Ay/27t(ye-ocWenowrecognizeiheremainingintegraltobeequaltoy/2n<je2zZij2zfromwliicliwehavethefinalres
33、ult:=42m5紜尸儼/L4.32 如式(4.9-1)說(shuō)明的那樣,從低通濾波器的傳遞函數(shù)得到高通濾波器的傳遞函數(shù)Hhp是可能的:Hhp1Hlp使用習(xí)題4.31中給出的信息,回答空間域高斯高通濾波器是什么形式?解:對(duì)Hhp進(jìn)行傅里葉反變換得_2,22、hHP(t,z)(t,z)e(z)精選4.33 考慮右側(cè)所示的圖像。右側(cè)的圖像是通過(guò)如下步驟得到的:(a)用(1)(xy)乘以左側(cè)的圖像;(b)計(jì)算DFT;(c)取該變換的復(fù)共軻;(d)計(jì)算反DFT;(e)用(1)(xy)乘以結(jié)果的實(shí)部。(從數(shù)學(xué)上)解釋為什么右邊的圖像會(huì)出現(xiàn)該現(xiàn)象。D.IPd*I*(I證明:取共腕的傅里葉逆變換:f(x,y)MI
34、NIF(u,v)*ej2MNuov0(ux/Mvy/N)M1N1而u0v0F(u'v)ej2(ux/Mvy/N)*M1N1F(u,v)ej2(ux/M0小)MNu0v0M1N11j2u(x)/Mv(y)/NF(u,v)eMNu0v0f(x,y)所以變換后的圖像與原圖像關(guān)于原點(diǎn)對(duì)稱(chēng)。4.34圖4.41(b)的水平軸上近似周期性的亮點(diǎn)的來(lái)源是什么?答:這些亮點(diǎn)的來(lái)源是左圖中左下角等間距的垂直線(xiàn)條。4.35圖4.53中的每一個(gè)濾波器在其中心處都有一個(gè)很強(qiáng)的尖刺,解釋這些尖刺的來(lái)源。答:這是由于高通濾波器的頻域表示為Hhp1Hlp式中的1,逆變換會(huì)空間與是一個(gè)沖擊響應(yīng)(x,y),因此,空域上的
35、中心處出現(xiàn)了一個(gè)尖刺。4.36 考慮下面所示的圖像。右邊的圖像是對(duì)左邊圖像用高斯低通濾波器進(jìn)行低通濾波,然后用高斯高通濾波器對(duì)其結(jié)果再進(jìn)行高通濾波得到的。圖像大小為420344,兩個(gè)濾波器均使用了D。25。(a)解釋右側(cè)圖像中戒指的中心部分明亮且實(shí)心的原因,考慮濾波后圖像的支配精選特性是物體(如手指、腕骨)的外邊界上的邊緣及這些邊緣之間的暗區(qū)域。換句話(huà)說(shuō),您并不希望高通濾波器將戒指內(nèi)部的恒定區(qū)域渲染為暗色,因?yàn)楦咄V波消除了直流項(xiàng)?(b)如果顛倒濾波處理的順序,您認(rèn)為結(jié)果會(huì)有區(qū)別嗎?答:(a)如果只進(jìn)行高通濾波,戒指的中心是黑色的。然而,通過(guò)低通濾波,我們將黑色中心區(qū)域平均化。最終結(jié)果中戒指如
36、此明亮的原因在于,戒指邊緣的灰度不連續(xù)性比圖像中其它任何部分都大,因而對(duì)顯示結(jié)果影響最大。(b)由于傅里葉變換是線(xiàn)性的,先后順序?qū)Y(jié)果沒(méi)有影響。4.37 給出一幅大小為MN的圖像,要求做一個(gè)實(shí)驗(yàn),實(shí)驗(yàn)所用截止頻率為D0的高斯低通濾波器重復(fù)對(duì)該圖像進(jìn)行低通濾波。而且忽略計(jì)算上的舍入誤差。令Cm.是實(shí)驗(yàn)所用機(jī)器可表示的最小正數(shù)。(a)令K表示該濾波器使用的次數(shù)。在進(jìn)行實(shí)驗(yàn)前,您能預(yù)測(cè)K為足夠大的值時(shí)的結(jié)果(圖像)將是什么嗎?如果能,結(jié)果是什么?(b)推導(dǎo)出保證預(yù)測(cè)結(jié)果的最小K值的表達(dá)式。(a)高斯低通濾波:G(urv)=H(ufv)F(utv)K次濾波得到的結(jié)果為:廿)=<?一尸(沙)試想K
37、很大時(shí),將只有F(0,0)通過(guò),即fHK(utu)=jK5M邛=.-if3,v)=(0,0)Otherwise.(b)為了保證得到上述結(jié)果,要求K足夠大,由于計(jì)算機(jī)的最小正數(shù)為Cmin,則當(dāng)某一個(gè)數(shù)小于的一半時(shí),該整數(shù)將被置為0o所以,K應(yīng)該滿(mǎn)足條件e-KD2(u,v)/2Dlv0.5Cmin精選lll(0.5Cmin)K>-D2u,v)/2D2-Dqln(0.5cmin)D2(u,v)|不考慮原點(diǎn),由于u和v都是離散數(shù)據(jù),所以D(u,v)1,所以K>-2Q:ln(0.5Cmin)4.38 考慮下面所示的圖像序列。最左側(cè)的圖像是商用印刷電路板的X射線(xiàn)圖像的一部分。該圖像右側(cè)的圖像分
38、別是使用一個(gè)Do30的高斯高通濾波器進(jìn)行1次、10次和100次濾波后的結(jié)果。圖像的大小為330334像素,每個(gè)像素由8比特灰度表示。為了便于顯示,圖像已進(jìn)行了縮放,但這對(duì)本習(xí)題沒(méi)有影響。(a)從這幾幅圖像可以看出,經(jīng)過(guò)有限次數(shù)的濾波后,圖像將不再發(fā)生變化。請(qǐng)說(shuō)明實(shí)際是否如此??梢院雎杂?jì)算舍入誤差。令7所表示完成此實(shí)驗(yàn)的機(jī)器可表示的最小正數(shù)。(b)如果在(a)中確定有限次迭代后變化將停止,求最小的迭代次數(shù)。解:(a)是的,經(jīng)過(guò)有限次濾波之后,圖像將不再發(fā)生變化。理解的關(guān)鍵在于將K次高通濾波函數(shù)視為Hk(II,1/)=1e-KD2(u>y2D0與4.37不同,這兒的濾波器是“凹口”濾波,將濾
39、除F(0,0),因而,將產(chǎn)生一幅圖像,圖像中所有像素灰度值的平均值是0(有些像素的灰度值為負(fù)數(shù))。所以,有一個(gè)K值,當(dāng)濾波次數(shù)大于K時(shí),圖像保持不變。if(uru)=(OrO)otherwise.(b)濾波K次之后,圖像保持不變,滿(mǎn)足下式:/衣(漢,u)=1-6一"°氣"叫/2耳=解出來(lái)的K值同4.374.39 如圖4.59中說(shuō)明的那樣,將高頻強(qiáng)調(diào)和直方圖均衡相結(jié)合是實(shí)現(xiàn)邊緣銳化精選和對(duì)比度增強(qiáng)的有效方法。(a)說(shuō)明這種結(jié)合方法是否與先用那種有關(guān)。(b)如果與應(yīng)用順序有關(guān),請(qǐng)給出先采用某種方法的理由。答:(a)頻域?yàn)V波在空域中表示為卷積:濾波之后再進(jìn)行直方圖均衡:g/1y)=Tg(xty)其中“T'代表直方圖均衡變換如果顛倒順序,結(jié)果為:g-=fxty)由于“T'是一個(gè)非線(xiàn)性過(guò)程,所以T#(尤
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度攪拌站礦粉購(gòu)銷(xiāo)合同示范文本3篇
- 2024消防信息管理系統(tǒng)開(kāi)發(fā)與應(yīng)用合同
- 2024年跨境挖掘機(jī)采購(gòu)與進(jìn)口清關(guān)合同3篇
- 2024年甲乙雙方關(guān)于高端智能家電買(mǎi)賣(mài)與安裝服務(wù)的合同
- 成都職業(yè)技術(shù)學(xué)院《企業(yè)級(jí)智能軟件開(kāi)發(fā)實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年行業(yè)罐體拆除協(xié)議標(biāo)準(zhǔn)格式版B版
- 二零二五年度個(gè)人與公司間旅游借款合同模板3篇
- 2025Oracle云計(jì)算服務(wù)安全合規(guī)性與風(fēng)險(xiǎn)管理合同2篇
- 二零二五年店面租賃與產(chǎn)品研發(fā)合同3篇
- 二零二五年度二手車(chē)買(mǎi)賣(mài)交易安全保障合同模板2篇
- 2024午托承包合同-校園內(nèi)學(xué)生午休服務(wù)協(xié)議3篇
- 馬克思主義基本原理+2024秋+試題 答案 國(guó)開(kāi)
- 蘇州大學(xué)《線(xiàn)性代數(shù)與解析幾何》2023-2024學(xué)年第一學(xué)期期末試卷
- 《地震災(zāi)害及其防治》課件
- 2024年版電商平臺(tái)入駐商家服務(wù)與銷(xiāo)售分成合同
- 蜜雪冰城合同范例
- 小紅書(shū)種草營(yíng)銷(xiāo)師(初級(jí))認(rèn)證考試真題試題庫(kù)(含答案)
- 如何高效學(xué)習(xí)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 寧夏銀川一中2024-2025學(xué)年高一數(shù)學(xué)上學(xué)期期末考試試題
- 山東省濟(jì)寧市2021-2022學(xué)年高二上學(xué)期期末考試地理試題(解析版)
- YS/T 649-2007銅及銅合金擠制棒
評(píng)論
0/150
提交評(píng)論